Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):70–78. doi: 10.1016/S0006-3495(00)76573-8

Solution structure of biopolymers: a new method of constructing a bead model.

E Banachowicz 1, J Gapiński 1, A Patkowski 1
PMCID: PMC1300618  PMID: 10620274

Abstract

We propose a new, automated method of converting crystallographic data into a bead model used for the calculations of hydrodynamic properties of rigid macromolecules. Two types of molecules are considered: nucleic acids and small proteins. A bead model of short DNA fragments has been constructed in which each nucleotide is represented by two identical, partially overlapping spheres: one for the base and one for the sugar and phosphate group. The optimum radius sigma = 5.0 A was chosen on the basis of a comparison of the calculated translational diffusion coefficients (D(T)) and the rotational relaxation times (tau(R)) with the corresponding experimental data for B-DNA fragments of 8, 12, and 20 basepairs. This value was assumed for the calculation D(T) and tau(R) of tRNA(Phe). Better agreement with the experimental data was achieved for slightly larger sigma = 5.7 A. A similar procedure was applied to small proteins. Bead models were constructed such that each amino acid was represented by a single sphere or a pair of identical, partially overlapping spheres, depending on the amino acid's size. Experimental data of D(T) of small proteins were used to establish the optimum value of sigma = 4.5 A for amino acids. The lack of experimental data on tau(R) for proteins restricted the tests to the translational diffusion properties.

Full Text

The Full Text of this article is available as a PDF (266.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byron O. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J. 1997 Jan;72(1):408–415. doi: 10.1016/S0006-3495(97)78681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cedergren-Zeppezauer E. S., Goonesekere N. C., Rozycki M. D., Myslik J. C., Dauter Z., Lindberg U., Schutt C. E. Crystallization and structure determination of bovine profilin at 2.0 A resolution. J Mol Biol. 1994 Jul 29;240(5):459–475. doi: 10.1006/jmbi.1994.1461. [DOI] [PubMed] [Google Scholar]
  3. Davies G. J., Dodson G. G., Hubbard R. E., Tolley S. P., Dauter Z., Wilson K. S., Hjort C., Mikkelsen J. M., Rasmussen G., Schülein M. Structure and function of endoglucanase V. Nature. 1993 Sep 23;365(6444):362–364. doi: 10.1038/365362a0. [DOI] [PubMed] [Google Scholar]
  4. Eimer W., Williamson J. R., Boxer S. G., Pecora R. Characterization of the overall and internal dynamics of short oligonucleotides by depolarized dynamic light scattering and NMR relaxation measurements. Biochemistry. 1990 Jan 23;29(3):799–811. doi: 10.1021/bi00455a030. [DOI] [PubMed] [Google Scholar]
  5. Gallagher W. H., Woodward C. K. The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: a dynamic light scattering study of a small protein. Biopolymers. 1989 Nov;28(11):2001–2024. doi: 10.1002/bip.360281115. [DOI] [PubMed] [Google Scholar]
  6. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  7. Garcia de la Torre J., Navarro S., Lopez Martinez M. C. Hydrodynamic properties of a double-helical model for DNA. Biophys J. 1994 May;66(5):1573–1579. doi: 10.1016/S0006-3495(94)80949-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granier T., Gallois B., Dautant A., d'Estaintot B. L., Précigoux G. Preliminary X-ray diffraction studies of the tetragonal form of native horse-spleen apoferritin. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):594–596. doi: 10.1107/S0907444995016842. [DOI] [PubMed] [Google Scholar]
  9. Harata K. X-ray structure of monoclinic turkey egg lysozyme at 1.3 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Sep 1;49(Pt 5):497–504. doi: 10.1107/S0907444993005542. [DOI] [PubMed] [Google Scholar]
  10. Hellweg T., Eimer W., Krahn E., Schneider K., Müller A. Hydrodynamic properties of nitrogenase--the MoFe protein from Azotobacter vinelandii studied by dynamic light scattering and hydrodynamic modelling. Biochim Biophys Acta. 1997 Feb 8;1337(2):311–318. doi: 10.1016/s0167-4838(96)00179-3. [DOI] [PubMed] [Google Scholar]
  11. Howlin B., Moss D. S., Harris G. W. Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model. Acta Crystallogr A. 1989 Dec 1;45(Pt 12):851–861. doi: 10.1107/s0108767389009177. [DOI] [PubMed] [Google Scholar]
  12. Hvidt S. Insulin association in neutral solutions studied by light scattering. Biophys Chem. 1991 Feb;39(2):205–213. doi: 10.1016/0301-4622(91)85023-j. [DOI] [PubMed] [Google Scholar]
  13. Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
  14. Peters J. W., Stowell M. H., Soltis S. M., Finnegan M. G., Johnson M. K., Rees D. C. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry. 1997 Feb 11;36(6):1181–1187. doi: 10.1021/bi9626665. [DOI] [PubMed] [Google Scholar]
  15. Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
  16. Takahara P. M., Rosenzweig A. C., Frederick C. A., Lippard S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature. 1995 Oct 19;377(6550):649–652. doi: 10.1038/377649a0. [DOI] [PubMed] [Google Scholar]
  17. Teller D. C., Swanson E., de Haën C. The translational friction coefficient of proteins. Methods Enzymol. 1979;61:103–124. doi: 10.1016/0076-6879(79)61010-8. [DOI] [PubMed] [Google Scholar]
  18. Venable R. M., Pastor R. W. Frictional models for stochastic simulations of proteins. Biopolymers. 1988 Jun;27(6):1001–1014. doi: 10.1002/bip.360270609. [DOI] [PubMed] [Google Scholar]
  19. Zhou H. X. Calculation of translational friction and intrinsic viscosity. I. General formulation for arbitrarily shaped particles. Biophys J. 1995 Dec;69(6):2286–2297. doi: 10.1016/S0006-3495(95)80099-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhou X. Z. Calculation of translational friction and intrinsic viscosity. II. Application to globular proteins. Biophys J. 1995 Dec;69(6):2298–2303. doi: 10.1016/S0006-3495(95)80100-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES