Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):188–199. doi: 10.1016/S0006-3495(00)76584-2

Does the KdpA subunit from the high affinity K(+)-translocating P-type KDP-ATPase have a structure similar to that of K(+) channels?

S R Durell 1, E P Bakker 1, H R Guy 1
PMCID: PMC1300629  PMID: 10620285

Abstract

Evidence is presented that the transmembrane KdpA subunit of the high affinity K(+)-translocating P-type Kdp-ATPase is evolutionarily derived from the superfamily of 2TM-type K(+) channels in bacteria. This extends a previous study relating the K(+) channels to the KtrAB, Trk, Trk1,2, and HKT1 K(+) symporter superfamily of both prokaryotes and eukaryotes. Although the channels are formed by four single-MPM motif subunits, the transmembrane KdpA subunit and the transmembrane subunit of the symporter proteins are postulated to have four corresponding MPM motifs within a single sequence. Analysis of 17 KdpA sequences reveals a pattern of residue conservation similar to that of the symporters and channels, and consistent with the crystal structure of the KcsA K(+) channel. In addition, the most highly conserved residues between the families, specifically the central glycines of the P2 segments, are those previously identified as crucial for the property of K(+)-selectivity that is common to each protein. This hypothesis is consistent with an experimental study of mutations that alter K(+) binding affinity of the Kdp transporter. Although most of the results of a previous study of the transmembrane topology of KdpA are consistent with the 4-MPM model, the one deviation can be explained by a plausible change in the structure due to the experimental method.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buurman E. T., Kim K. T., Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem. 1995 Mar 24;270(12):6678–6685. doi: 10.1074/jbc.270.12.6678. [DOI] [PubMed] [Google Scholar]
  3. Diatloff E., Kumar R., Schachtman D. P. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Lett. 1998 Jul 31;432(1-2):31–36. doi: 10.1016/s0014-5793(98)00833-3. [DOI] [PubMed] [Google Scholar]
  4. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  5. Durell S. R., Guy H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J. 1999 Aug;77(2):789–807. doi: 10.1016/S0006-3495(99)76932-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Durell S. R., Hao Y., Nakamura T., Bakker E. P., Guy H. R. Evolutionary relationship between K(+) channels and symporters. Biophys J. 1999 Aug;77(2):775–788. doi: 10.1016/S0006-3495(99)76931-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Epstein W., Walderhaug M. O., Polarek J. W., Hesse J. E., Dorus E., Daniel J. M. The bacterial Kdp K(+)-ATPase and its relation to other transport ATPases, such as the Na+/K(+)- and Ca2(+)-ATPases in higher organisms. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):479–487. doi: 10.1098/rstb.1990.0026. [DOI] [PubMed] [Google Scholar]
  8. Gassel M., Siebers A., Epstein W., Altendorf K. Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim Biophys Acta. 1998 Dec 9;1415(1):77–84. doi: 10.1016/s0005-2736(98)00179-5. [DOI] [PubMed] [Google Scholar]
  9. Hafer J., Siebers A., Bakker E. P. The high-affinity K+-translocating ATPase complex from Bacillus acidocaldarius consists of three subunits. Mol Microbiol. 1989 Apr;3(4):487–495. doi: 10.1111/j.1365-2958.1989.tb00195.x. [DOI] [PubMed] [Google Scholar]
  10. Henikoff J. G., Henikoff S. Using substitution probabilities to improve position-specific scoring matrices. Comput Appl Biosci. 1996 Apr;12(2):135–143. doi: 10.1093/bioinformatics/12.2.135. [DOI] [PubMed] [Google Scholar]
  11. Hesse J. E., Wieczorek L., Altendorf K., Reicin A. S., Dorus E., Epstein W. Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4746–4750. doi: 10.1073/pnas.81.15.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jan L. Y., Jan Y. N. Potassium channels and their evolving gates. Nature. 1994 Sep 8;371(6493):119–122. doi: 10.1038/371119a0. [DOI] [PubMed] [Google Scholar]
  13. Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966 Aug 27;211(5052):969–970. doi: 10.1038/211969a0. [DOI] [PubMed] [Google Scholar]
  14. Lü Q., Miller C. Silver as a probe of pore-forming residues in a potassium channel. Science. 1995 Apr 14;268(5208):304–307. doi: 10.1126/science.7716526. [DOI] [PubMed] [Google Scholar]
  15. Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res. 1996 Oct 1;24(19):3836–3845. doi: 10.1093/nar/24.19.3836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
  17. Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 Dec 8;270(5242):1660–1663. doi: 10.1126/science.270.5242.1660. [DOI] [PubMed] [Google Scholar]
  18. Rubio F., Schwarz M., Gassmann W., Schroeder J. I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem. 1999 Mar 12;274(11):6839–6847. doi: 10.1074/jbc.274.11.6839. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES