Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):211–226. doi: 10.1016/S0006-3495(00)76586-6

Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels.

M Pusch 1, L Bertorello 1, F Conti 1
PMCID: PMC1300631  PMID: 10620287

Abstract

The voltage-gated potassium channel KCNQ1 associates with the small KCNE1 subunit to form the cardiac IKs delayed rectifier potassium current and mutations in both genes can lead to the long QT syndrome. KCNQ1 can form functional homotetrameric channels, however with drastically different biophysical properties compared to heteromeric KCNQ1/KCNE1 channels. We analyzed gating and conductance of these channels expressed in Xenopus oocytes using the two-electrode voltage-clamp and the patch-clamp technique and high extracellular potassium (K) and rubidium (Rb) solutions. Inward tail currents of homomeric KCNQ1 channels are increased about threefold upon substitution of 100 mM potassium with 100 mM rubidium despite a smaller rubidium permeability, suggesting an effect of rubidium on gating. However, the kinetics of tail currents and the steady-state activation curve are only slightly changed in rubidium. Single-channel amplitude at negative voltages was estimated by nonstationary noise analysis, and it was found that rubidium has only a small effect on homomeric channels (1.2-fold increase) when measured at a 5-kHz bandwidth. The apparent single-channel conductance was decreased after filtering the data at lower cutoff frequencies indicative of a relatively fast "flickery/block" process. The relative conductance in rubidium compared to potassium increased at lower cutoff frequencies (about twofold at 10 Hz), suggesting that the main effect of rubidium is to decrease the probability of channel blockage leading to an increase of inward currents without large changes in gating properties. Macroscopic inward tail currents of heteromeric KCNQ1/KCNE1 channels in rubidium are reduced by about twofold and show a pronounced sigmoidal time course that develops with a delay similar to the inactivation process of homomeric KCNQ1, and is indicative of the presence of several open states. The single channel amplitude of heteromers is about twofold smaller in rubidium than in potassium at a bandwidth of 5 kHz. Filtering at lower cutoff frequencies reduces the apparent single-channel conductance, the ratio of the conductance in rubidium versus potassium is, however, independent of the cutoff frequency. Our results suggest the presence of a relatively rapid process (flicker) that can occur almost independently of the gating state. Occupancy by rubidium at negative voltages favors the flicker-open state and slows the flickering rate in homomeric channels, whereas rubidium does not affect the flickering in heteromeric channels. The effects of KCNE1 on the conduction properties are consistent with an interaction of KCNE1 in the outer vestibule of the channel.

Full Text

The Full Text of this article is available as a PDF (216.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman M. J. The long QT syndrome. Pediatr Rev. 1998 Jul;19(7):232–238. doi: 10.1542/pir.19-7-232. [DOI] [PubMed] [Google Scholar]
  2. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78–80. doi: 10.1038/384078a0. [DOI] [PubMed] [Google Scholar]
  3. Cahalan M. D., Chandy K. G., DeCoursey T. E., Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol. 1985 Jan;358:197–237. doi: 10.1113/jphysiol.1985.sp015548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gambale F., Bregante M., Stragapede F., Cantu' A. M. Ionic channels of the sugar beet tonoplast are regulated by a multi-ion single-file permeation mechanism. J Membr Biol. 1996 Nov;154(1):69–79. doi: 10.1007/s002329900133. [DOI] [PubMed] [Google Scholar]
  5. Goldstein S. A., Miller C. Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron. 1991 Sep;7(3):403–408. doi: 10.1016/0896-6273(91)90292-8. [DOI] [PubMed] [Google Scholar]
  6. Heginbotham L., MacKinnon R. Conduction properties of the cloned Shaker K+ channel. Biophys J. 1993 Nov;65(5):2089–2096. doi: 10.1016/S0006-3495(93)81244-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaczmarek L. K., Blumenthal E. M. Properties and regulation of the minK potassium channel protein. Physiol Rev. 1997 Jul;77(3):627–641. doi: 10.1152/physrev.1997.77.3.627. [DOI] [PubMed] [Google Scholar]
  8. Matteson D. R., Swenson R. P., Jr External monovalent cations that impede the closing of K channels. J Gen Physiol. 1986 May;87(5):795–816. doi: 10.1085/jgp.87.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pusch M. Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK. Pflugers Arch. 1998 Dec;437(1):172–174. doi: 10.1007/s004240050765. [DOI] [PubMed] [Google Scholar]
  10. Pusch M., Magrassi R., Wollnik B., Conti F. Activation and inactivation of homomeric KvLQT1 potassium channels. Biophys J. 1998 Aug;75(2):785–792. doi: 10.1016/S0006-3495(98)77568-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sala S., Matteson D. R. Voltage-dependent slowing of K channel closing kinetics by Rb+. J Gen Physiol. 1991 Sep;98(3):535–554. doi: 10.1085/jgp.98.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanguinetti M. C., Curran M. E., Zou A., Shen J., Spector P. S., Atkinson D. L., Keating M. T. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996 Nov 7;384(6604):80–83. doi: 10.1038/384080a0. [DOI] [PubMed] [Google Scholar]
  13. Schulze-Bahr E., Wang Q., Wedekind H., Haverkamp W., Chen Q., Sun Y., Rubie C., Hördt M., Towbin J. A., Borggrefe M. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet. 1997 Nov;17(3):267–268. doi: 10.1038/ng1197-267. [DOI] [PubMed] [Google Scholar]
  14. Sesti F., Goldstein S. A. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol. 1998 Dec;112(6):651–663. doi: 10.1085/jgp.112.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shapiro M. S., DeCoursey T. E. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes. J Gen Physiol. 1991 Jun;97(6):1251–1278. doi: 10.1085/jgp.97.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shapiro M. S., DeCoursey T. E. Selectivity and gating of the type L potassium channel in mouse lymphocytes. J Gen Physiol. 1991 Jun;97(6):1227–1250. doi: 10.1085/jgp.97.6.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Splawski I., Tristani-Firouzi M., Lehmann M. H., Sanguinetti M. C., Keating M. T. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997 Nov;17(3):338–340. doi: 10.1038/ng1197-338. [DOI] [PubMed] [Google Scholar]
  18. Swenson R. P., Jr, Armstrong C. M. K+ channels close more slowly in the presence of external K+ and Rb+. Nature. 1981 Jun 4;291(5814):427–429. doi: 10.1038/291427a0. [DOI] [PubMed] [Google Scholar]
  19. Tai K. K., Goldstein S. A. The conduction pore of a cardiac potassium channel. Nature. 1998 Feb 5;391(6667):605–608. doi: 10.1038/35416. [DOI] [PubMed] [Google Scholar]
  20. Takumi T., Ohkubo H., Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988 Nov 18;242(4881):1042–1045. doi: 10.1126/science.3194754. [DOI] [PubMed] [Google Scholar]
  21. Tristani-Firouzi M., Sanguinetti M. C. Voltage-dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunits. J Physiol. 1998 Jul 1;510(Pt 1):37–45. doi: 10.1111/j.1469-7793.1998.037bz.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wagoner P. K., Oxford G. S. Cation permeation through the voltage-dependent potassium channel in the squid axon. Characteristics and mechanisms. J Gen Physiol. 1987 Aug;90(2):261–290. doi: 10.1085/jgp.90.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang K. W., Tai K. K., Goldstein S. A. MinK residues line a potassium channel pore. Neuron. 1996 Mar;16(3):571–577. doi: 10.1016/s0896-6273(00)80076-8. [DOI] [PubMed] [Google Scholar]
  24. Wang Q., Curran M. E., Splawski I., Burn T. C., Millholland J. M., VanRaay T. J., Shen J., Timothy K. W., Vincent G. M., de Jager T. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996 Jan;12(1):17–23. doi: 10.1038/ng0196-17. [DOI] [PubMed] [Google Scholar]
  25. Yang W. P., Levesque P. C., Little W. A., Conder M. L., Shalaby F. Y., Blanar M. A. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4017–4021. doi: 10.1073/pnas.94.8.4017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yang Y., Sigworth F. J. Single-channel properties of IKs potassium channels. J Gen Physiol. 1998 Dec;112(6):665–678. doi: 10.1085/jgp.112.6.665. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES