Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):246–256. doi: 10.1016/S0006-3495(00)76588-X

A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes.

S Ali 1, S Minchey 1, A Janoff 1, E Mayhew 1
PMCID: PMC1300633  PMID: 10620289

Abstract

High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC >> DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.

Full Text

The Full Text of this article is available as a PDF (130.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Baekmark T. R., Pedersen S., Jørgensen K., Mouritsen O. G. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine. Biophys J. 1997 Sep;73(3):1479–1491. doi: 10.1016/S0006-3495(97)78180-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balasubramanian S. V., Straubinger R. M. Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry. 1994 Aug 2;33(30):8941–8947. doi: 10.1021/bi00196a011. [DOI] [PubMed] [Google Scholar]
  4. Burt H. M., Jackson J. K., Bains S. K., Liggins R. T., Oktaba A. M., Arsenault A. L., Hunter W. L. Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid). Cancer Lett. 1995 Jan 6;88(1):73–79. doi: 10.1016/0304-3835(94)03614-o. [DOI] [PubMed] [Google Scholar]
  5. Deutsch H. M., Glinski J. A., Hernandez M., Haugwitz R. D., Narayanan V. L., Suffness M., Zalkow L. H. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity. J Med Chem. 1989 Apr;32(4):788–792. doi: 10.1021/jm00124a011. [DOI] [PubMed] [Google Scholar]
  6. Lehtonen J. Y., Adlercreutz H., Kinnunen P. K. Binding of daidzein to liposomes. Biochim Biophys Acta. 1996 Nov 13;1285(1):91–100. doi: 10.1016/s0005-2736(96)00154-x. [DOI] [PubMed] [Google Scholar]
  7. Li C., Yu D., Inoue T., Yang D. J., Milas L., Hunter N. R., Kim E. E., Wallace S. Synthesis and evaluation of water-soluble polyethylene glycol-paclitaxel conjugate as a paclitaxel prodrug. Anticancer Drugs. 1996 Aug;7(6):642–648. doi: 10.1097/00001813-199608000-00004. [DOI] [PubMed] [Google Scholar]
  8. McMullen T. P., McElhaney R. N. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995 Mar 8;1234(1):90–98. doi: 10.1016/0005-2736(94)00266-r. [DOI] [PubMed] [Google Scholar]
  9. Perkins W. R., Li X., Slater J. L., Harmon P. A., Ahl P. L., Minchey S. R., Gruner S. M., Janoff A. S. Solute-induced shift of phase transition temperature in Di-saturated PC liposomes: adoption of ripple phase creates osmotic stress. Biochim Biophys Acta. 1997 Jul 5;1327(1):41–51. doi: 10.1016/s0005-2736(97)00042-4. [DOI] [PubMed] [Google Scholar]
  10. Qiu X., Pidgeon C. Membrane properties of antiviral phospholipids containing heteroatoms in the acyl chains. Biochemistry. 1994 Feb 1;33(4):960–972. doi: 10.1021/bi00170a015. [DOI] [PubMed] [Google Scholar]
  11. Rose W. C., Clark J. L., Lee F. Y., Casazza A. M. Preclinical antitumor activity of water-soluble paclitaxel derivatives. Cancer Chemother Pharmacol. 1997;39(6):486–492. doi: 10.1007/s002800050603. [DOI] [PubMed] [Google Scholar]
  12. Ruocco M. J., Shipley G. G., Oldfield E. Galactocerebroside-phospholipid interactions in bilayer membranes. Biophys J. 1983 Jul;43(1):91–101. doi: 10.1016/S0006-3495(83)84327-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sharma A., Mayhew E., Bolcsak L., Cavanaugh C., Harmon P., Janoff A., Bernacki R. J. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int J Cancer. 1997 Mar 28;71(1):103–107. doi: 10.1002/(sici)1097-0215(19970328)71:1<103::aid-ijc17>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  14. Sharma A., Mayhew E., Straubinger R. M. Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model. Cancer Res. 1993 Dec 15;53(24):5877–5881. [PubMed] [Google Scholar]
  15. Sharma D., Chelvi T. P., Kaur J., Chakravorty K., De T. K., Maitra A., Ralhan R. Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Oncol Res. 1996;8(7-8):281–286. [PubMed] [Google Scholar]
  16. Sharma D., Chelvi T. P., Kaur J., Ralhan R. Thermosensitive liposomal taxol formulation: heat-mediated targeted drug delivery in murine melanoma. Melanoma Res. 1998 Jun;8(3):240–244. doi: 10.1097/00008390-199806000-00006. [DOI] [PubMed] [Google Scholar]
  17. Tarr B. D., Sambandan T. G., Yalkowsky S. H. A new parenteral emulsion for the administration of taxol. Pharm Res. 1987 Apr;4(2):162–165. doi: 10.1023/a:1016483406511. [DOI] [PubMed] [Google Scholar]
  18. Weiss R. B., Donehower R. C., Wiernik P. H., Ohnuma T., Gralla R. J., Trump D. L., Baker J. R., Jr, Van Echo D. A., Von Hoff D. D., Leyland-Jones B. Hypersensitivity reactions from taxol. J Clin Oncol. 1990 Jul;8(7):1263–1268. doi: 10.1200/JCO.1990.8.7.1263. [DOI] [PubMed] [Google Scholar]
  19. Wenk M. R., Fahr A., Reszka R., Seelig J. Paclitaxel partitioning into lipid bilayers. J Pharm Sci. 1996 Feb;85(2):228–231. doi: 10.1021/js950120i. [DOI] [PubMed] [Google Scholar]
  20. Woodburn K., Kessel D. The alteration of plasma lipoproteins by cremophor EL. J Photochem Photobiol B. 1994 Mar;22(3):197–201. doi: 10.1016/1011-1344(93)06968-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES