Abstract
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the structural and thermal properties of totally synthetic D-erythro-N-palmitoyl-lactosyl-C(18)-sphingosine (C16:0-LacCer). Over the temperature range 0-90 degrees C, fully hydrated C16:0-LacCer shows complex thermal transitions characteristic of polymorphic behavior of exclusively bilayer phases. On heating at 5 degrees C/min, hydrated C16:0-LacCer undergoes a complex two-peak endothermic transition with maxima at 69 degrees C and 74 degrees C and a total enthalpy of 14.6 kcal/mol C16:0-LacCer. At a slower heating rate (1.5 degrees C/min), two endothermic transitions are observed at 66 degrees C and 78 degrees C. After cooling to 0 degrees C, the subsequent heating run shows three overlapping endothermic transitions at 66 degrees C, 69 degrees C, and 71.5 degrees C, followed by a chain-melting endothermic transition at 78 degrees C. Two thermal protocols were used to completely convert C16:0-LacCer to its stable, high melting temperature (78 degrees C) form. As revealed by x-ray diffraction, over the temperature range 20-78 degrees C this stable phase exhibits a bilayer structure, periodicity d approximately 65 A with an ordered chain packing mode. At the phase transition (78 degrees C) chain melting occurs, and C16:0-LacCer converts to a liquid crystalline bilayer (L(alpha)) phase of reduced periodicity d approximately 59 A. On cooling from the L(alpha) phase, C16:0-LacCer converts to metastable bilayer phases undergoing transitions at 66-72 degrees C. These studies allow comparisons to be made with the behavior of the corresponding C16:0-Cer (. J. Lipid Res. 36:1936-1944) and C16:0-GluCer and C16:0-GalCer (. J. Lipid Res. 40:839-849). Our systematic studies are aimed at understanding the role of oligosaccharide complexity in regulating glycosphingolipid structure and properties.
Full Text
The Full Text of this article is available as a PDF (108.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Curatolo W., Small D. M., Shipley G. G. Phase behavior and structural characteristics of hydrated bovine brain gangliosides. Biochim Biophys Acta. 1977 Jul 4;468(1):11–20. doi: 10.1016/0005-2736(77)90147-x. [DOI] [PubMed] [Google Scholar]
- Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry. 1982 Apr 13;21(8):1761–1764. doi: 10.1021/bi00537a010. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Messenger molecules derived from membrane lipids. Curr Opin Cell Biol. 1994 Apr;6(2):226–229. doi: 10.1016/0955-0674(94)90140-6. [DOI] [PubMed] [Google Scholar]
- Fishman P. H., Pacuszka T., Orlandi P. A. Gangliosides as receptors for bacterial enterotoxins. Adv Lipid Res. 1993;25:165–187. [PubMed] [Google Scholar]
- Haas N. S., Shipley G. G. Structure and properties of N-palmitoleoylgalactosylsphingosine (cerebroside). Biochim Biophys Acta. 1995 Dec 13;1240(2):133–141. doi: 10.1016/0005-2736(95)00174-3. [DOI] [PubMed] [Google Scholar]
- Hakomori S., Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem. 1995 Dec;118(6):1091–1103. doi: 10.1093/oxfordjournals.jbchem.a124992. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
- Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science. 1991 Jul 19;253(5017):320–323. doi: 10.1126/science.1857969. [DOI] [PubMed] [Google Scholar]
- Hinz H. J., Kuttenreich H., Meyer R., Renner M., Fründ R., Koynova R., Boyanov A. I., Tenchov B. G. Stereochemistry and size of sugar head groups determine structure and phase behavior of glycolipid membranes: densitometric, calorimetric, and X-ray studies. Biochemistry. 1991 May 28;30(21):5125–5138. doi: 10.1021/bi00235a003. [DOI] [PubMed] [Google Scholar]
- Mannock D. A., McElhaney R. N., Harper P. E., Gruner S. M. Differential scanning calorimetry and X-ray diffraction studies of the thermotropic phase behavior of the diastereomeric di-tetradecyl-beta-D-galactosyl glycerols and their mixture. Biophys J. 1994 Mar;66(3 Pt 1):734–740. doi: 10.1016/s0006-3495(94)80849-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
- Reed R. A., Mattai J., Shipley G. G. Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers. Biochemistry. 1987 Feb 10;26(3):824–832. doi: 10.1021/bi00377a025. [DOI] [PubMed] [Google Scholar]
- Reed R. A., Shipley G. G. Effect of chain unsaturation on the structure and thermotropic properties of galactocerebrosides. Biophys J. 1989 Feb;55(2):281–292. doi: 10.1016/S0006-3495(89)82803-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed R. A., Shipley G. G. Properties of ganglioside GM1 in phosphatidylcholine bilayer membranes. Biophys J. 1996 Mar;70(3):1363–1372. doi: 10.1016/S0006-3495(96)79694-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed R. A., Shipley G. G. Structure and metastability of N-lignocerylgalactosylsphingosine (cerebroside) bilayers. Biochim Biophys Acta. 1987 Jan 26;896(2):153–164. doi: 10.1016/0005-2736(87)90175-1. [DOI] [PubMed] [Google Scholar]
- Ruocco M. J., Atkinson D., Small D. M., Skarjune R. P., Oldfield E., Shipley G. G. X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoylgalactosylsphingosine (cerebroside). Biochemistry. 1981 Oct 13;20(21):5957–5966. doi: 10.1021/bi00524a006. [DOI] [PubMed] [Google Scholar]
- Ruocco M. J., Shipley G. G. Thermal and structural behavior of natural cerebroside 3-sulfate in bilayer membranes. Biochim Biophys Acta. 1986 Jul 24;859(2):246–256. doi: 10.1016/0005-2736(86)90220-8. [DOI] [PubMed] [Google Scholar]
- Saxena K., Duclos R. I., Zimmermann P., Schmidt R. R., Shipley G. G. Structure and properties of totally synthetic galacto- and gluco-cerebrosides. J Lipid Res. 1999 May;40(5):839–849. [PubMed] [Google Scholar]
- Sen A., Hui S. W., Mannock D. A., Lewis R. N., McElhaney R. N. Physical properties of glycosyl diacylglycerols. 2. X-ray diffraction studies of a homologous series of 1,2-Di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols. Biochemistry. 1990 Aug 28;29(34):7799–7804. doi: 10.1021/bi00486a004. [DOI] [PubMed] [Google Scholar]
- Sen A., Williams W. P., Quinn P. J. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim Biophys Acta. 1981 Feb 23;663(2):380–389. doi: 10.1016/0005-2760(81)90167-3. [DOI] [PubMed] [Google Scholar]
- Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
- Shipley G. G., Green J. P., Nichols B. W. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta. 1973 Jul 18;311(4):531–544. doi: 10.1016/0005-2736(73)90128-4. [DOI] [PubMed] [Google Scholar]
- Zhang R. G., Scott D. L., Westbrook M. L., Nance S., Spangler B. D., Shipley G. G., Westbrook E. M. The three-dimensional crystal structure of cholera toxin. J Mol Biol. 1995 Aug 25;251(4):563–573. doi: 10.1006/jmbi.1995.0456. [DOI] [PubMed] [Google Scholar]
- Zhang R. G., Westbrook M. L., Westbrook E. M., Scott D. L., Otwinowski Z., Maulik P. R., Reed R. A., Shipley G. G. The 2.4 A crystal structure of cholera toxin B subunit pentamer: choleragenoid. J Mol Biol. 1995 Aug 25;251(4):550–562. doi: 10.1006/jmbi.1995.0455. [DOI] [PubMed] [Google Scholar]
- van den Berg L. H., Sadiq S. A., Lederman S., Latov N. The gp120 glycoprotein of HIV-1 binds to sulfatide and to the myelin associated glycoprotein. J Neurosci Res. 1992 Dec;33(4):513–518. doi: 10.1002/jnr.490330403. [DOI] [PubMed] [Google Scholar]