Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):344–353. doi: 10.1016/S0006-3495(00)76597-0

Förster excitation energy transfer in peridinin-chlorophyll-a-protein.

F J Kleima 1, E Hofmann 1, B Gobets 1, I H van Stokkum 1, R van Grondelle 1, K Diederichs 1, H van Amerongen 1
PMCID: PMC1300642  PMID: 10620298

Abstract

Time-resolved fluorescence anisotropy spectroscopy has been used to study the chlorophyll a (Chl a) to Chl a excitation energy transfer in the water-soluble peridinin-chlorophyll a-protein (PCP) of the dinoflagellate Amphidinium carterae. Monomeric PCP binds eight peridinins and two Chl a. The trimeric structure of PCP, resolved at 2 A (, Science. 272:1788-1791), allows accurate calculations of energy transfer times by use of the Förster equation. The anisotropy decay time constants of 6.8 +/- 0.8 ps (tau(1)) and 350 +/- 15 ps (tau(2)) are respectively assigned to intra- and intermonomeric excitation equilibration times. Using the ratio tau(1)/tau(2) and the amplitude of the anisotropy, the best fit of the experimental data is achieved when the Q(y) transition dipole moment is rotated by 2-7 degrees with respect to the y axis in the plane of the Chl a molecule. In contrast to the conclusion of, Biochemistry. 23:1564-1571) that the refractive index (n) in the Förster equation should be equal to that of the solvent, n can be estimated to be 1.6 +/- 0.1, which is larger than that of the solvent (water). Based on our observations we predict that the relatively slow intermonomeric energy transfer in vivo is overruled by faster energy transfer from a PCP monomer to, e.g., the light-harvesting a/c complex.

Full Text

The Full Text of this article is available as a PDF (152.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duerring M., Schmidt G. B., Huber R. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 A resolution. J Mol Biol. 1991 Feb 5;217(3):577–592. doi: 10.1016/0022-2836(91)90759-y. [DOI] [PubMed] [Google Scholar]
  2. Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hofmann E., Wrench P. M., Sharples F. P., Hiller R. G., Welte W., Diederichs K. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science. 1996 Jun 21;272(5269):1788–1791. doi: 10.1126/science.272.5269.1788. [DOI] [PubMed] [Google Scholar]
  4. Koka P., Song P. S. The chromophore topography and binding environment of perididin.chlorophyll a.protein complexes from marine dinoflagellate algae. Biochim Biophys Acta. 1977 Dec 20;495(2):220–231. doi: 10.1016/0005-2795(77)90379-8. [DOI] [PubMed] [Google Scholar]
  5. Koolhaus M. H., Frese R. N., Fowler G. J., Bibby T. S., Georgakopoulou S., van der Zwan G., Hunter C. N., van Grondelle R. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry. 1998 Apr 7;37(14):4693–4698. doi: 10.1021/bi973036l. [DOI] [PubMed] [Google Scholar]
  6. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  7. Moog R. S., Kuki A., Fayer M. D., Boxer S. G. Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: orientation of the chlorophyll S1 transition dipole. Biochemistry. 1984 Mar 27;23(7):1564–1571. doi: 10.1021/bi00302a034. [DOI] [PubMed] [Google Scholar]
  8. Schirmer T., Bode W., Huber R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol. 1987 Aug 5;196(3):677–695. doi: 10.1016/0022-2836(87)90040-4. [DOI] [PubMed] [Google Scholar]
  9. Song P. S., Koka P., Prézelin B. B., Haxo F. T. Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry. 1976 Oct 5;15(20):4422–4427. doi: 10.1021/bi00665a012. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES