Abstract
The effects of pH on the yield (phi(r)), and on the apparent rise and decay constants (k(r), k(d)), of the O(630) intermediate are important features of the bacteriorhodopsin (bR) photocycle. The effects are associated with three titration-like transitions: 1) A drop in k(r), k(d), and phi(r) at high pH [pK(a)(1) approximately 8]; 2) A rise in phi(r) at low pH [pK(a)(2) approximately 4.5]; and 3) A drop in k(r) and k(d) at low pH [pK(a)(3) approximately 4. 5]. (pK(a) values are for native bR in 100 mM NaCl). Clarification of these effects is approached by studying the pH dependence of phi(r), k(r), and k(d) in native and acetylated bR, and in its D96N and R82Q mutants. The D96N experiments were carried out in the presence of small amounts of the weak acids, azide, nitrite, and thiocyanate. Analysis of the mutant's data leads to the identification of the protein residue (R(1)) whose state of protonation controls the magnitude of phi(r), k(r), and k(d) at high pH, as Asp-96. Acetylation of bR modifies the Lys-129 residue, which is known to affect the pK(a) of the group (XH), which releases the proton to the membrane exterior during the photocycle. The effects of acetylation on the O(630) parameters reveal that the low-pH titrations should be ascribed to two additional protein residues R(2) and R(3). R(2) affects the rise of phi(r) at low pH, whereas the state of protonation of R(3) affects both k(r) and k(d). Our data confirm a previous suggestion that R(3) should be identified as the proton release moiety (XH). A clear identification of R(2), including its possible identity with R(3), remains open.
Full Text
The Full Text of this article is available as a PDF (121.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althaus T., Stockburger M. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release. Biochemistry. 1998 Mar 3;37(9):2807–2817. doi: 10.1021/bi9714969. [DOI] [PubMed] [Google Scholar]
- Ames J. B., Mathies R. A. The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study. Biochemistry. 1990 Aug 7;29(31):7181–7190. doi: 10.1021/bi00483a005. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Govindjee R., Imasheva E. S., Misra S., Ebrey T. G., Feng Y., Crouch R. K., Menick D. R. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry. 1995 Jul 11;34(27):8820–8834. doi: 10.1021/bi00027a034. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Govindjee R., Kono M., Imasheva E., Lukashev E., Ebrey T. G., Crouch R. K., Menick D. R., Feng Y. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry. 1993 Oct 5;32(39):10331–10343. doi: 10.1021/bi00090a008. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Imasheva E. S., Ebrey T. G., Chen N., Menick D. R., Crouch R. K. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry. 1997 Jul 22;36(29):8671–8676. doi: 10.1021/bi970744y. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balashov S. P., Lu M., Imasheva E. S., Govindjee R., Ebrey T. G., Othersen B., 3rd, Chen Y., Crouch R. K., Menick D. R. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Biochemistry. 1999 Feb 16;38(7):2026–2039. doi: 10.1021/bi981926a. [DOI] [PubMed] [Google Scholar]
- Bressler S., Friedman N., Li Q., Ottolenghi M., Saha C., Sheves M. Generation of the O630 photointermediate of bacteriorhodopsin is controlled by the state of protonation of several protein residues. Biochemistry. 1999 Feb 16;38(7):2018–2025. doi: 10.1021/bi981901b. [DOI] [PubMed] [Google Scholar]
- Brown L. S., Bonet L., Needleman R., Lanyi J. K. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Biophys J. 1993 Jul;65(1):124–130. doi: 10.1016/S0006-3495(93)81064-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. S., Lanyi J. K. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1731–1734. doi: 10.1073/pnas.93.4.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem. 1995 Nov 10;270(45):27122–27126. doi: 10.1074/jbc.270.45.27122. [DOI] [PubMed] [Google Scholar]
- Cao Y., Brown L. S., Needleman R., Lanyi J. K. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: an attempt to understand the complex kinetics of the pH changes and the N and O intermediates. Biochemistry. 1993 Sep 28;32(38):10239–10248. doi: 10.1021/bi00089a046. [DOI] [PubMed] [Google Scholar]
- Cao Y., Brown L. S., Sasaki J., Maeda A., Needleman R., Lanyi J. K. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle. Biophys J. 1995 Apr;68(4):1518–1530. doi: 10.1016/S0006-3495(95)80324-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Y., Váró G., Klinger A. L., Czajkowsky D. M., Braiman M. S., Needleman R., Lanyi J. K. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Biochemistry. 1993 Mar 2;32(8):1981–1990. doi: 10.1021/bi00059a015. [DOI] [PubMed] [Google Scholar]
- Chernavskii D. S., Chizhov I. V., Lozier R. H., Murina T. M., Prokhorov A. M., Zubov B. V. Kinetic model of bacteriorhodopsin photocycle: pathway from M state to bR. Photochem Photobiol. 1989 May;49(5):649–653. doi: 10.1111/j.1751-1097.1989.tb08437.x. [DOI] [PubMed] [Google Scholar]
- Dioumaev A. K., Richter H. T., Brown L. S., Tanio M., Tuzi S., Saito H., Kimura Y., Needleman R., Lanyi J. K. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry. 1998 Feb 24;37(8):2496–2506. doi: 10.1021/bi971842m. [DOI] [PubMed] [Google Scholar]
- Duñach M., Marti T., Khorana H. G., Rothschild K. J. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9873–9877. doi: 10.1073/pnas.87.24.9873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisfeld W., Pusch C., Diller R., Lohrmann R., Stockburger M. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Biochemistry. 1993 Jul 20;32(28):7196–7215. doi: 10.1021/bi00079a017. [DOI] [PubMed] [Google Scholar]
- Gat Y., Friedman N., Sheves M., Ottolenghi M. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Biochemistry. 1997 Apr 8;36(14):4135–4148. doi: 10.1021/bi962322e. [DOI] [PubMed] [Google Scholar]
- Govindjec R., Kono M., Balashov S. P., Imasheva E., Sheves M., Ebrey T. G. Effects of substitution of tyrosine 57 with asparagine and phenylalanine on the properties of bacteriorhodopsin. Biochemistry. 1995 Apr 11;34(14):4828–4838. doi: 10.1021/bi00014a040. [DOI] [PubMed] [Google Scholar]
- Govindjee R., Imasheva E. S., Misra S., Balashov S. P., Ebrey T. G., Chen N., Menick D. R., Crouch R. K. Mutation of a surface residue, lysine-129, reverses the order of proton release and uptake in bacteriorhodopsin; guanidine hydrochloride restores it. Biophys J. 1997 Feb;72(2 Pt 1):886–898. doi: 10.1016/s0006-3495(97)78723-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govindjee R., Misra S., Balashov S. P., Ebrey T. G., Crouch R. K., Menick D. R. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Biophys J. 1996 Aug;71(2):1011–1023. doi: 10.1016/S0006-3495(96)79302-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
- Holz M., Drachev L. A., Mogi T., Otto H., Kaulen A. D., Heyn M. P., Skulachev V. P., Khorana H. G. Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2167–2171. doi: 10.1073/pnas.86.7.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Coutre J., Tittor J., Oesterhelt D., Gerwert K. Experimental evidence for hydrogen-bonded network proton transfer in bacteriorhodopsin shown by Fourier-transform infrared spectroscopy using azide as catalyst. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4962–4966. doi: 10.1073/pnas.92.11.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Q., Govindjee R., Ebrey T. G. A correlation between proton pumping and the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7079–7082. doi: 10.1073/pnas.81.22.7079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra S., Govindjee R., Ebrey T. G., Chen N., Ma J. X., Crouch R. K. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q. Biochemistry. 1997 Apr 22;36(16):4875–4883. doi: 10.1021/bi962673t. [DOI] [PubMed] [Google Scholar]
- Mowery P. C., Lozier R. H., Chae Q., Tseng Y. W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry. 1979 Sep 18;18(19):4100–4107. doi: 10.1021/bi00586a007. [DOI] [PubMed] [Google Scholar]
- Otto H., Marti T., Holz M., Mogi T., Stern L. J., Engel F., Khorana H. G., Heyn M. P. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1018–1022. doi: 10.1073/pnas.87.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rammelsberg R., Huhn G., Lübben M., Gerwert K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry. 1998 Apr 7;37(14):5001–5009. doi: 10.1021/bi971701k. [DOI] [PubMed] [Google Scholar]
- Richter H. T., Brown L. S., Needleman R., Lanyi J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry. 1996 Apr 2;35(13):4054–4062. doi: 10.1021/bi952883q. [DOI] [PubMed] [Google Scholar]
- Souvignier G., Gerwert K. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy. Biophys J. 1992 Nov;63(5):1393–1405. doi: 10.1016/S0006-3495(92)81722-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg G., Sheves M., Bressler S., Ottolenghi M. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin. Biochemistry. 1994 Oct 18;33(41):12439–12450. doi: 10.1021/bi00207a010. [DOI] [PubMed] [Google Scholar]
- Száraz S., Oesterhelt D., Ormos P. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. Biophys J. 1994 Oct;67(4):1706–1712. doi: 10.1016/S0006-3495(94)80644-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorgeirsson T. E., Milder S. J., Miercke L. J., Betlach M. C., Shand R. F., Stroud R. M., Kliger D. S. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Biochemistry. 1991 Sep 24;30(38):9133–9142. doi: 10.1021/bi00102a003. [DOI] [PubMed] [Google Scholar]
- Tittor J., Soell C., Oesterhelt D., Butt H. J., Bamberg E. A defective proton pump, point-mutated bacteriorhodopsin Asp96----Asn is fully reactivated by azide. EMBO J. 1989 Nov;8(11):3477–3482. doi: 10.1002/j.1460-2075.1989.tb08512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimányi L., Váró G., Chang M., Ni B., Needleman R., Lanyi J. K. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry. 1992 Sep 15;31(36):8535–8543. doi: 10.1021/bi00151a022. [DOI] [PubMed] [Google Scholar]
- Zscherp C., Schlesinger R., Tittor J., Oesterhelt D., Heberle J. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5498–5503. doi: 10.1073/pnas.96.10.5498. [DOI] [PMC free article] [PubMed] [Google Scholar]
