Abstract
We have used an in vitro system that mimics the assembly of immature Moloney murine leukemia virus (M-MuLV) particles to examine how viral structural (Gag) proteins oligomerize at membrane interfaces. Ordered arrays of histidine-tagged Moloney capsid protein (his-MoCA) were obtained on membrane bilayers composed of phosphatidylcholine (PC) and the nickel-chelating lipid 1, 2-di-O-hexadecyl-sn-glycero-3-(1'-2"-R-hydroxy-3'N-(5-amino-1-carboxy pentyl)iminodiacetic acid)propyl ether (DHGN). The membrane-bound arrays were analyzed by electron microscopy (EM) and atomic force microscopy (AFM). Two-dimensional projection images obtained by EM showed that bilayer-bound his-MoCA proteins formed cages surrounding different types of protein-free cage holes with similar cage holes spaced at 81.5-A distances and distances between dissimilar cage holes of 45.5 A. AFM images, showing topological features viewed near the membrane-proximal domain of the his-MoCA protein, revealed a cage network of only symmetrical hexamers spaced at 79-A distances. These results are consistent with a model in which dimers constitute structural building blocks and where membrane-proximal and distal his-MoCA regions interact with different partners in membrane-bound arrays.
Full Text
The Full Text of this article is available as a PDF (534.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin J. M., Henderson R., Beckman E., Zemlin F. Images of purple membrane at 2.8 A resolution obtained by cryo-electron microscopy. J Mol Biol. 1988 Aug 5;202(3):585–591. doi: 10.1016/0022-2836(88)90288-4. [DOI] [PubMed] [Google Scholar]
- Barklis E., McDermott J., Wilkens S., Fuller S., Thompson D. Organization of HIV-1 capsid proteins on a lipid monolayer. J Biol Chem. 1998 Mar 27;273(13):7177–7180. doi: 10.1074/jbc.273.13.7177. [DOI] [PubMed] [Google Scholar]
- Barklis E., McDermott J., Wilkens S., Schabtach E., Schmid M. F., Fuller S., Karanjia S., Love Z., Jones R., Rui Y. Structural analysis of membrane-bound retrovirus capsid proteins. EMBO J. 1997 Mar 17;16(6):1199–1213. doi: 10.1093/emboj/16.6.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
- Brown H. G., Troncoso J. C., Hoh J. H. Neurofilament-L homopolymers are less mechanically stable than native neurofilaments. J Microsc. 1998 Sep;191(Pt 3):229–237. [PubMed] [Google Scholar]
- Campbell S., Vogt V. M. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol. 1995 Oct;69(10):6487–6497. doi: 10.1128/jvi.69.10.6487-6497.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czajkowsky D. M., Sheng S., Shao Z. Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. J Mol Biol. 1998 Feb 20;276(2):325–330. doi: 10.1006/jmbi.1997.1535. [DOI] [PubMed] [Google Scholar]
- Darst S. A., Ahlers M., Meller P. H., Kubalek E. W., Blankenburg R., Ribi H. O., Ringsdorf H., Kornberg R. D. Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophys J. 1991 Feb;59(2):387–396. doi: 10.1016/S0006-3495(91)82232-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Guzman R. N., Wu Z. R., Stalling C. C., Pappalardo L., Borer P. N., Summers M. F. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998 Jan 16;279(5349):384–388. doi: 10.1126/science.279.5349.384. [DOI] [PubMed] [Google Scholar]
- Déméné H., Jullian N., Morellet N., de Rocquigny H., Cornille F., Maigret B., Roques B. P. Three-dimensional 1H NMR structure of the nucleocapsid protein NCp10 of Moloney murine leukemia virus. J Biomol NMR. 1994 Mar;4(2):153–170. doi: 10.1007/BF00175244. [DOI] [PubMed] [Google Scholar]
- Fass D., Davey R. A., Hamson C. A., Kim P. S., Cunningham J. M., Berger J. M. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science. 1997 Sep 12;277(5332):1662–1666. doi: 10.1126/science.277.5332.1662. [DOI] [PubMed] [Google Scholar]
- Fotiadis D., Müller D. J., Tsiotis G., Hasler L., Tittmann P., Mini T., Jenö P., Gross H., Engel A. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J Mol Biol. 1998;283(1):83–94. doi: 10.1006/jmbi.1998.2097. [DOI] [PubMed] [Google Scholar]
- Frank J., Radermacher M., Wagenknecht T., Verschoor A. Studying ribosome structure by electron microscopy and computer-image processing. Methods Enzymol. 1988;164:3–35. doi: 10.1016/s0076-6879(88)64032-8. [DOI] [PubMed] [Google Scholar]
- Fuller S. D., Wilk T., Gowen B. E., Kräusslich H. G., Vogt V. M. Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol. 1997 Oct 1;7(10):729–738. doi: 10.1016/s0960-9822(06)00331-9. [DOI] [PubMed] [Google Scholar]
- Fäcke M., Janetzko A., Shoeman R. L., Kräusslich H. G. A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum. J Virol. 1993 Aug;67(8):4972–4980. doi: 10.1128/jvi.67.8.4972-4980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamble T. R., Vajdos F. F., Yoo S., Worthylake D. K., Houseweart M., Sundquist W. I., Hill C. P. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996 Dec 27;87(7):1285–1294. doi: 10.1016/s0092-8674(00)81823-1. [DOI] [PubMed] [Google Scholar]
- Gamble T. R., Yoo S., Vajdos F. F., von Schwedler U. K., Worthylake D. K., Wang H., McCutcheon J. P., Sundquist W. I., Hill C. P. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997 Oct 31;278(5339):849–853. doi: 10.1126/science.278.5339.849. [DOI] [PubMed] [Google Scholar]
- Gitti R. K., Lee B. M., Walker J., Summers M. F., Yoo S., Sundquist W. I. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science. 1996 Jul 12;273(5272):231–235. doi: 10.1126/science.273.5272.231. [DOI] [PubMed] [Google Scholar]
- Gross I., Hohenberg H., Huckhagel C., Kräusslich H. G. N-Terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J Virol. 1998 Jun;72(6):4798–4810. doi: 10.1128/jvi.72.6.4798-4810.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen M. S., Barklis E. Structural interactions between retroviral Gag proteins examined by cysteine cross-linking. J Virol. 1995 Feb;69(2):1150–1159. doi: 10.1128/jvi.69.2.1150-1159.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen M., Jelinek L., Jones R. S., Stegeman-Olsen J., Barklis E. Assembly and composition of intracellular particles formed by Moloney murine leukemia virus. J Virol. 1993 Sep;67(9):5163–5174. doi: 10.1128/jvi.67.9.5163-5174.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Hill C. P., Worthylake D., Bancroft D. P., Christensen A. M., Sundquist W. I. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3099–3104. doi: 10.1073/pnas.93.7.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mou J., Yang J., Huang C., Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry. 1994 Aug 23;33(33):9981–9985. doi: 10.1021/bi00199a022. [DOI] [PubMed] [Google Scholar]
- Mou J., Yang J., Shao Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol. 1995 May 5;248(3):507–512. doi: 10.1006/jmbi.1995.0238. [DOI] [PubMed] [Google Scholar]
- Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nermut M. V., Hockley D. J., Jowett J. B., Jones I. M., Garreau M., Thomas D. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. Virology. 1994 Jan;198(1):288–296. doi: 10.1006/viro.1994.1032. [DOI] [PubMed] [Google Scholar]
- Rein A., McClure M. R., Rice N. R., Luftig R. B., Schultz A. M. Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7246–7250. doi: 10.1073/pnas.83.19.7246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato C., Sato M., Iwasaki A., Doi T., Engel A. The sodium channel has four domains surrounding a central pore. J Struct Biol. 1998;121(3):314–325. doi: 10.1006/jsbi.1998.3990. [DOI] [PubMed] [Google Scholar]
- Schmid M. F., Dargahi R., Tam M. W. SPECTRA: a system for processing electron images of crystals. Ultramicroscopy. 1993 Mar;48(3):251–264. doi: 10.1016/0304-3991(93)90099-j. [DOI] [PubMed] [Google Scholar]
- Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
- Simon S. A., McIntosh T. J. Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta. 1984 Jun 13;773(1):169–172. doi: 10.1016/0005-2736(84)90562-5. [DOI] [PubMed] [Google Scholar]
- Tauskela J. S., Akler M., Thompson M. The size dependence of cholate-dialyzed vesicles on phosphatidylcholine concentration. Anal Biochem. 1992 Mar;201(2):282–287. doi: 10.1016/0003-2697(92)90340-d. [DOI] [PubMed] [Google Scholar]
- Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
- Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
- Wills J. W., Cameron C. E., Wilson C. B., Xiang Y., Bennett R. P., Leis J. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol. 1994 Oct;68(10):6605–6618. doi: 10.1128/jvi.68.10.6605-6618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeager M., Wilson-Kubalek E. M., Weiner S. G., Brown P. O., Rein A. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7299–7304. doi: 10.1073/pnas.95.13.7299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol. 1995 Sep;69(9):5716–5722. doi: 10.1128/jvi.69.9.5716-5722.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Schwedler U. K., Stemmler T. L., Klishko V. Y., Li S., Albertine K. H., Davis D. R., Sundquist W. I. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 1998 Mar 16;17(6):1555–1568. doi: 10.1093/emboj/17.6.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]