Abstract
The denaturation of immunoglobulin G was studied by different calorimetric methods and circular dichroism spectroscopy. The thermogram of the immunoglobulin showed two main transitions that are a superimposition of distinct denaturation steps. It was shown that the two transitions have different sensitivities to changes in temperature and pH. The two peaks represent the F(ab) and F(c) fragments of the IgG molecule. The F(ab) fragment is most sensitive to heat treatment, whereas the F(c) fragment is most sensitive to decreasing pH. The transitions were independent, and the unfolding was immediately followed by an irreversible aggregation step. Below the unfolding temperature, the unfolding is the rate-determining step in the overall denaturation process. At higher temperatures where a relatively high concentration of (partially) unfolded IgG molecules is present, the rate of aggregation is so fast that IgG molecules become locked in aggregates before they are completely denatured. Furthermore, the structure of the aggregates formed depends on the denaturation method. The circular dichroism spectrum of the IgG is also strongly affected by both heat treatment and low pH treatment. It was shown that a strong correlation exists between the denaturation transitions as observed by calorimetry and the changes in secondary structure derived from circular dichroism. After both heat- and low-pH-induced denaturation, a significant fraction of the secondary structure remains.
Full Text
The Full Text of this article is available as a PDF (129.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander A. J., Hughes D. E. Monitoring of IgG antibody thermal stability by micellar electrokinetic capillary chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 1995 Oct 15;67(20):3626–3632. doi: 10.1021/ac00116a002. [DOI] [PubMed] [Google Scholar]
- Amzel L. M., Poljak R. J. Three-dimensional structure of immunoglobulins. Annu Rev Biochem. 1979;48:961–997. doi: 10.1146/annurev.bi.48.070179.004525. [DOI] [PubMed] [Google Scholar]
- Augener W., Grey H. M. Studies on the mechanism of heat aggregation of human gamma-G. J Immunol. 1970 Oct;105(4):1024–1030. [PubMed] [Google Scholar]
- Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
- Brody T. Multistep denaturation and hierarchy of disulfide bond cleavage of a monoclonal antibody. Anal Biochem. 1997 May 1;247(2):247–256. doi: 10.1006/abio.1997.2062. [DOI] [PubMed] [Google Scholar]
- Buchner J., Renner M., Lilie H., Hinz H. J., Jaenicke R., Kiefhabel T., Rudolph R. Alternatively folded states of an immunoglobulin. Biochemistry. 1991 Jul 16;30(28):6922–6929. doi: 10.1021/bi00242a016. [DOI] [PubMed] [Google Scholar]
- Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Chothia C., Novotný J., Bruccoleri R., Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol. 1985 Dec 5;186(3):651–663. doi: 10.1016/0022-2836(85)90137-8. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
- Goto Y., Hamaguchi K. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol. 1982 Apr 25;156(4):911–926. doi: 10.1016/0022-2836(82)90147-4. [DOI] [PubMed] [Google Scholar]
- Goto Y., Ichimura N., Hamaguchi K. Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain. Biochemistry. 1988 Mar 8;27(5):1670–1677. doi: 10.1021/bi00405a043. [DOI] [PubMed] [Google Scholar]
- Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
- Hu C. Q., Sturtevant J. M. Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry. 1987 Jan 13;26(1):178–182. doi: 10.1021/bi00375a025. [DOI] [PubMed] [Google Scholar]
- Kats M., Richberg P. C., Hughes D. E. Conformational diversity and conformational transitions of a monoclonal antibody monitored by circular dichroism and capillary electrophoresis. Anal Chem. 1995 Sep 1;67(17):2943–2948. doi: 10.1021/ac00113a032. [DOI] [PubMed] [Google Scholar]
- Kats M., Richberg P. C., Hughes D. E. pH-dependent isoform transitions of a monoclonal antibody monitored by micellar electrokinetic capillary chromatography. Anal Chem. 1997 Feb 1;69(3):338–343. doi: 10.1021/ac9606517. [DOI] [PubMed] [Google Scholar]
- Lepock J. R., Ritchie K. P., Kolios M. C., Rodahl A. M., Heinz K. A., Kruuv J. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992 Dec 22;31(50):12706–12712. doi: 10.1021/bi00165a023. [DOI] [PubMed] [Google Scholar]
- López-Bote J. P., Langa C., Lastres P., Rius C., Marquet A., Ramos-Ruiz R., Bernabéu C. Aggregated human immunoglobulins bind to modified proteins. Scand J Immunol. 1993 May;37(5):593–601. doi: 10.1111/j.1365-3083.1993.tb02577.x. [DOI] [PubMed] [Google Scholar]
- Martsev S. P., Kravchuk Z. I., Vlasov A. P., Lyakhnovich G. V. Thermodynamic and functional characterization of a stable IgG conformer obtained by renaturation from a partially structured low pH-induced state. FEBS Lett. 1995 Mar 20;361(2-3):173–175. doi: 10.1016/0014-5793(95)00145-y. [DOI] [PubMed] [Google Scholar]
- McCarthy D. A., Drake A. F. Spectroscopic studies on IgG aggregate formation. Mol Immunol. 1989 Sep;26(9):875–881. doi: 10.1016/0161-5890(89)90144-2. [DOI] [PubMed] [Google Scholar]
- Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
- Oreskes I., Mandel D. Size fractionation of thermal aggregates of immunoglobulin G. Anal Biochem. 1983 Oct 1;134(1):199–204. doi: 10.1016/0003-2697(83)90284-1. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
- Protasevich I., Ranjbar B., Lobachov V., Makarov A., Gilli R., Briand C., Lafitte D., Haiech J. Conformation and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry. 1997 Feb 25;36(8):2017–2024. doi: 10.1021/bi962538g. [DOI] [PubMed] [Google Scholar]
- Rosenqvist E., Jøssang T., Feder J. Thermal properties of human IgG. Mol Immunol. 1987 May;24(5):495–501. doi: 10.1016/0161-5890(87)90024-1. [DOI] [PubMed] [Google Scholar]
- Rousseaux J., Aubert J. P., Loucheux-Lefebvre M. H. Comparative study of the conformational features of rat immunoglobulin G subclasses by circular dichroism. Biochim Biophys Acta. 1982 Feb 4;701(1):93–101. doi: 10.1016/0167-4838(82)90316-8. [DOI] [PubMed] [Google Scholar]
- Rowe E. S., Tanford C. Equilibrium and kinetics of the denaturation of a homogeneous human immunoglobulin light chain. Biochemistry. 1973 Nov 20;12(24):4822–4827. doi: 10.1021/bi00748a002. [DOI] [PubMed] [Google Scholar]
- Shimba N., Torigoe H., Takahashi H., Masuda K., Shimada I., Arata Y., Sarai A. Comparative thermodynamic analyses of the Fv, Fab* and Fab fragments of anti-dansyl mouse monoclonal antibody. FEBS Lett. 1995 Mar 6;360(3):247–250. doi: 10.1016/0014-5793(95)00113-n. [DOI] [PubMed] [Google Scholar]
- Solís-Mendiola S., Rojo-Domínguez A., Hernández-Arana A. Cooperativity in the unfolding transitions of cysteine proteinases. Calorimetric study of the heat denaturation of chymopapain and papain. Biochim Biophys Acta. 1993 Nov 10;1203(1):121–125. doi: 10.1016/0167-4838(93)90045-s. [DOI] [PubMed] [Google Scholar]
- Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
- Tetin S. Y., Linthicum D. S. Circular dichroism spectroscopy of monoclonal antibodies that bind a superpotent guanidinium sweetener ligand. Biochemistry. 1996 Jan 30;35(4):1258–1264. doi: 10.1021/bi951576h. [DOI] [PubMed] [Google Scholar]
- Tischenko V. M., Zav'yalov V. P., Medgyesi G. A., Potekhin S. A., Privalov P. L. A thermodynamic study of cooperative structures in rabbit immunoglobulin G. Eur J Biochem. 1982 Sep 1;126(3):517–521. doi: 10.1111/j.1432-1033.1982.tb06811.x. [DOI] [PubMed] [Google Scholar]
- Vermeer A. W., Bremer M. G., Norde W. Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochim Biophys Acta. 1998 Sep 16;1425(1):1–12. doi: 10.1016/s0304-4165(98)00048-8. [DOI] [PubMed] [Google Scholar]
- de Jongh H. H., Goormaghtigh E., Killian J. A. Analysis of circular dichroism spectra of oriented protein-lipid complexes: toward a general application. Biochemistry. 1994 Dec 6;33(48):14521–14528. doi: 10.1021/bi00252a019. [DOI] [PubMed] [Google Scholar]