Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):451–457. doi: 10.1016/S0006-3495(00)76607-0

Cell volume measurement using scanning ion conductance microscopy.

Y E Korchev 1, J Gorelik 1, M J Lab 1, E V Sviderskaya 1, C L Johnston 1, C R Coombes 1, I Vodyanoy 1, C R Edwards 1
PMCID: PMC1300652  PMID: 10620308

Abstract

We report a novel scanning ion conductance microscopy (SICM) technique for assessing the volume of living cells, which allows quantitative, high-resolution characterization of dynamic changes in cell volume while retaining the cell functionality. The technique can measure a wide range of volumes from 10(-19) to 10(-9) liter. The cell volume, as well as the volume of small cellular structures such as lamelopodia, dendrites, processes, or microvilli, can be measured with the 2.5 x 10(-20) liter resolution. The sample does not require any preliminary preparation before cell volume measurement. Both cell volume and surface characteristics can be simultaneously and continuously assessed during relatively long experiments. The SICM method can also be used for rapid estimation of the changes in cell volume. These are important when monitoring the cell responses to different physiological stimuli.

Full Text

The Full Text of this article is available as a PDF (428.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Leefmans F. J., Cruzblanca H., Gamiño S. M., Altamirano J., Nani A., Reuss L. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons. J Neurophysiol. 1994 May;71(5):1787–1796. doi: 10.1152/jn.1994.71.5.1787. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Leefmans F. J., Gamiño S. M., Reuss L. Cell volume changes upon sodium pump inhibition in Helix aspersa neurones. J Physiol. 1992 Dec;458:603–619. doi: 10.1113/jphysiol.1992.sp019436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arakawa H., Umemura K., Ikai A. Protein images obtained by STM, AFM and TEM. Nature. 1992 Jul 9;358(6382):171–173. doi: 10.1038/358171a0. [DOI] [PubMed] [Google Scholar]
  4. Bard A. J., Fan F. R., Pierce D. T., Unwin P. R., Wipf D. O., Zhou F. Chemical imaging of surfaces with the scanning electrochemical microscope. Science. 1991 Oct 4;254(5028):68–74. doi: 10.1126/science.254.5028.68. [DOI] [PubMed] [Google Scholar]
  5. Basilico C., Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–165. doi: 10.1016/s0065-230x(08)60305-x. [DOI] [PubMed] [Google Scholar]
  6. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  7. Crowe W. E., Altamirano J., Huerto L., Alvarez-Leefmans F. J. Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience. 1995 Nov;69(1):283–296. doi: 10.1016/0306-4522(95)00219-9. [DOI] [PubMed] [Google Scholar]
  8. Errington R. J., Fricker M. D., Wood J. L., Hall A. C., White N. S. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. Am J Physiol. 1997 Mar;272(3 Pt 1):C1040–C1051. doi: 10.1152/ajpcell.1997.272.3.C1040. [DOI] [PubMed] [Google Scholar]
  9. Farinas J., Kneen M., Moore M., Verkman A. S. Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol. 1997 Sep;110(3):283–296. doi: 10.1085/jgp.110.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guilak F. Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J Microsc. 1994 Mar;173(Pt 3):245–256. doi: 10.1111/j.1365-2818.1994.tb03447.x. [DOI] [PubMed] [Google Scholar]
  11. Hallows K. R., Packman C. H., Knauf P. A. Acute cell volume changes in anisotonic media affect F-actin content of HL-60 cells. Am J Physiol. 1991 Dec;261(6 Pt 1):C1154–C1161. doi: 10.1152/ajpcell.1991.261.6.C1154. [DOI] [PubMed] [Google Scholar]
  12. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  13. Hansma P. K., Drake B., Marti O., Gould S. A., Prater C. B. The scanning ion-conductance microscope. Science. 1989 Feb 3;243(4891):641–643. doi: 10.1126/science.2464851. [DOI] [PubMed] [Google Scholar]
  14. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  15. Iwaki K., Sukhatme V. P., Shubeita H. E., Chien K. R. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990 Aug 15;265(23):13809–13817. [PubMed] [Google Scholar]
  16. Johnston C. L., Cox H. C., Gomm J. J., Coombes R. C. bFGF and aFGF induce membrane ruffling in breast cancer cells but not in normal breast epithelial cells: FGFR-4 involvement. Biochem J. 1995 Mar 1;306(Pt 2):609–616. doi: 10.1042/bj3060609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawahara K., Onodera M., Fukuda Y. A simple method for continuous measurement of cell height during a volume change in a single A6 cell. Jpn J Physiol. 1994;44(4):411–419. doi: 10.2170/jjphysiol.44.411. [DOI] [PubMed] [Google Scholar]
  18. Korchev Y. E., Bashford C. L., Milovanovic M., Vodyanoy I., Lab M. J. Scanning ion conductance microscopy of living cells. Biophys J. 1997 Aug;73(2):653–658. doi: 10.1016/S0006-3495(97)78100-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Korchev Y. E., Milovanovic M., Bashford C. L., Bennett D. C., Sviderskaya E. V., Vodyanoy I., Lab M. J. Specialized scanning ion-conductance microscope for imaging of living cells. J Microsc. 1997 Oct;188(Pt 1):17–23. doi: 10.1046/j.1365-2818.1997.2430801.x. [DOI] [PubMed] [Google Scholar]
  20. Lee G. M. Measurement of volume injected into individual cells by quantitative fluorescence microscopy. J Cell Sci. 1989 Nov;94(Pt 3):443–447. doi: 10.1242/jcs.94.3.443. [DOI] [PubMed] [Google Scholar]
  21. McManus M., Fischbarg J., Sun A., Hebert S., Strange K. Laser light-scattering system for studying cell volume regulation and membrane transport processes. Am J Physiol. 1993 Aug;265(2 Pt 1):C562–C570. doi: 10.1152/ajpcell.1993.265.2.C562. [DOI] [PubMed] [Google Scholar]
  22. Meinild A., Klaerke D. A., Loo D. D., Wright E. M., Zeuthen T. The human Na+-glucose cotransporter is a molecular water pump. J Physiol. 1998 Apr 1;508(Pt 1):15–21. doi: 10.1111/j.1469-7793.1998.015br.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakahari T., Murakami M., Yoshida H., Miyamoto M., Sohma Y., Imai Y. Decrease in rat submandibular acinar cell volume during ACh stimulation. Am J Physiol. 1990 Jun;258(6 Pt 1):G878–G886. doi: 10.1152/ajpgi.1990.258.6.G878. [DOI] [PubMed] [Google Scholar]
  24. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  25. Saito T., Hartell N. A., Muguruma H., Hotta S., Sasaki S., Ito M., Karube I. Light dose and time dependency of photodynamic cell membrane damage. Photochem Photobiol. 1998 Nov;68(5):745–748. [PubMed] [Google Scholar]
  26. Sariban-Sohraby S., Burg M. B., Turner R. J. Aldosterone-stimulated sodium uptake by apical membrane vesicles from A6 cells. J Biol Chem. 1984 Sep 25;259(18):11221–11225. [PubMed] [Google Scholar]
  27. Schoenenberger C. A., Hoh J. H. Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J. 1994 Aug;67(2):929–936. doi: 10.1016/S0006-3495(94)80556-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Swanson J. A., Lee M., Knapp P. E. Cellular dimensions affecting the nucleocytoplasmic volume ratio. J Cell Biol. 1991 Nov;115(4):941–948. doi: 10.1083/jcb.115.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Valverde M. A., Bond T. D., Hardy S. P., Taylor J. C., Higgins C. F., Altamirano J., Alvarez-Leefmans F. J. The multidrug resistance P-glycoprotein modulates cell regulatory volume decrease. EMBO J. 1996 Sep 2;15(17):4460–4468. [PMC free article] [PubMed] [Google Scholar]
  30. Zhu Q., Tekola P., Baak J. P., Beliën J. A. Measurement by confocal laser scanning microscopy of the volume of epidermal nuclei in thick skin sections. Anal Quant Cytol Histol. 1994 Apr;16(2):145–152. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES