Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):466–473. doi: 10.1016/S0006-3495(00)76609-4

Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy.

C M Yip 1, M L Brader 1, B H Frank 1, M R DeFelippis 1, M D Ward 1
PMCID: PMC1300654  PMID: 10620310

Abstract

Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes.

Full Text

The Full Text of this article is available as a PDF (472.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakaysa D. L., Radziuk J., Havel H. A., Brader M. L., Li S., Dodd S. W., Beals J. M., Pekar A. H., Brems D. N. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci. 1996 Dec;5(12):2521–2531. doi: 10.1002/pro.5560051215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker E. N., Dodson G. X-ray diffraction data on some crystalline varieties of insulin. J Mol Biol. 1970 Dec 28;54(3):605–609. doi: 10.1016/0022-2836(70)90131-2. [DOI] [PubMed] [Google Scholar]
  3. Balschmidt P., Hansen F. B., Dodson E. J., Dodson G. G., Korber F. Structure of porcine insulin cocrystallized with clupeine Z. Acta Crystallogr B. 1991 Dec 1;47(Pt 6):975–986. doi: 10.1107/s010876819100842x. [DOI] [PubMed] [Google Scholar]
  4. Birnbaum D. T., Kilcomons M. A., DeFelippis M. R., Beals J. M. Assembly and dissociation of human insulin and LysB28ProB29-insulin hexamers: a comparison study. Pharm Res. 1997 Jan;14(1):25–36. doi: 10.1023/a:1012095115151. [DOI] [PubMed] [Google Scholar]
  5. Brems D. N., Alter L. A., Beckage M. J., Chance R. E., DiMarchi R. D., Green L. K., Long H. B., Pekar A. H., Shields J. E., Frank B. H. Altering the association properties of insulin by amino acid replacement. Protein Eng. 1992 Sep;5(6):527–533. doi: 10.1093/protein/5.6.527. [DOI] [PubMed] [Google Scholar]
  6. Brems D. N., Brown P. L., Heckenlaible L. A., Frank B. H. Equilibrium denaturation of insulin and proinsulin. Biochemistry. 1990 Oct 2;29(39):9289–9293. doi: 10.1021/bi00491a026. [DOI] [PubMed] [Google Scholar]
  7. Bryant C., Strohl M., Green L. K., Long H. B., Alter L. A., Pekar A. H., Chance R. E., Brems D. N. Detection of an equilibrium intermediate in the folding of a monomeric insulin analog. Biochemistry. 1992 Jun 30;31(25):5692–5698. doi: 10.1021/bi00140a002. [DOI] [PubMed] [Google Scholar]
  8. Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure. 1995 Jun 15;3(6):615–622. doi: 10.1016/s0969-2126(01)00195-2. [DOI] [PubMed] [Google Scholar]
  9. Czajkowsky D. M., Allen M. J., Elings V., Shao Z. Direct visualization of surface charge in aqueous solution. Ultramicroscopy. 1998 Jul;74(1-2):1–5. doi: 10.1016/s0304-3991(98)00024-2. [DOI] [PubMed] [Google Scholar]
  10. DeFelippis M. R., Bakaysa D. L., Bell M. A., Heady M. A., Li S., Pye S., Youngman K. M., Radziuk J., Frank B. H. Preparation and characterization of a cocrystalline suspension of [LysB28,ProB29]-human insulin analogue. J Pharm Sci. 1998 Feb;87(2):170–176. doi: 10.1021/js970285m. [DOI] [PubMed] [Google Scholar]
  11. Fullerton W. W., Low B. W. Insulin crystallization in the presence of basic proteins and peptides. Biochim Biophys Acta. 1970 Jul 27;214(1):141–147. doi: 10.1016/0005-2795(70)90078-4. [DOI] [PubMed] [Google Scholar]
  12. Goldman J., Carpenter F. H. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry. 1974 Oct 22;13(22):4566–4574. doi: 10.1021/bi00719a015. [DOI] [PubMed] [Google Scholar]
  13. Hillier A. C., Ward M. D. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals. Science. 1994 Mar 4;263(5151):1261–1264. doi: 10.1126/science.263.5151.1261. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann J. A., Chance R. E., Johnson M. G. Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. Protein Expr Purif. 1990 Nov;1(2):127–133. doi: 10.1016/1046-5928(90)90005-j. [DOI] [PubMed] [Google Scholar]
  15. Hollenberg M. D. Receptor triggering and receptor regulation: structure-activity relationships from the receptor's point of view. J Med Chem. 1990 May;33(5):1275–1281. doi: 10.1021/jm00167a001. [DOI] [PubMed] [Google Scholar]
  16. Konnert J. H., D'Antonio P., Ward K. B. Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):603–613. doi: 10.1107/S0907444994001988. [DOI] [PubMed] [Google Scholar]
  17. Land TA, Malkin AJ, Kuznetsov YG, McPherson A, De Yoreo JJ Mechanisms of protein crystal growth: An atomic force microscopy study of canavalin crystallization. Phys Rev Lett. 1995 Oct 2;75(14):2774–2777. doi: 10.1103/PhysRevLett.75.2774. [DOI] [PubMed] [Google Scholar]
  18. Li H., Nadarajah A., Pusey M. L. Determining the molecular-growth mechanisms of protein crystal faces by atomic force microscopy. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1036–1045. doi: 10.1107/s0907444999003388. [DOI] [PubMed] [Google Scholar]
  19. Li H., Perozzo M. A., Konnert J. H., Nadarajah A., Pusey M. L. Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1023–1035. doi: 10.1107/s090744499900339x. [DOI] [PubMed] [Google Scholar]
  20. Malkin AJ, Land TA, Kuznetsov YG, McPherson A, DeYoreo JJ. Investigation of virus crystal growth mechanisms by in situ atomic force microscopy. Phys Rev Lett. 1995 Oct 2;75(14):2778–2781. doi: 10.1103/PhysRevLett.75.2778. [DOI] [PubMed] [Google Scholar]
  21. Möller C., Allen M., Elings V., Engel A., Müller D. J. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J. 1999 Aug;77(2):1150–1158. doi: 10.1016/S0006-3495(99)76966-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Müller D. J., Büldt G., Engel A. Force-induced conformational change of bacteriorhodopsin. J Mol Biol. 1995 Jun 2;249(2):239–243. doi: 10.1006/jmbi.1995.0292. [DOI] [PubMed] [Google Scholar]
  23. Ng J. D., Kuznetsov Y. G., Malkin A. J., Keith G., Giegé R., McPherson A. Visualization of RNA crystal growth by atomic force microscopy. Nucleic Acids Res. 1997 Jul 1;25(13):2582–2588. doi: 10.1093/nar/25.13.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pekar A. H., Frank B. H. Conformation of proinsulin. A comparison of insulin and proinsulin self-association at neutral pH. Biochemistry. 1972 Oct 24;11(22):4013–4016. doi: 10.1021/bi00772a001. [DOI] [PubMed] [Google Scholar]
  25. Simkin R. D., Cole S. A., Ozawa H., Magdoff-Fairchild B., Eggena P., Rudko A., Low B. W. Precipitation and crystallization of insulin in the presence of lysozyme and salmine. Biochim Biophys Acta. 1970 Feb 17;200(2):385–394. doi: 10.1016/0005-2795(70)90181-9. [DOI] [PubMed] [Google Scholar]
  26. Smith G. D., Swenson D. C., Dodson E. J., Dodson G. G., Reynolds C. D. Structural stability in the 4-zinc human insulin hexamer. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7093–7097. doi: 10.1073/pnas.81.22.7093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walz T., Tittmann P., Fuchs K. H., Müller D. J., Smith B. L., Agre P., Gross H., Engel A. Surface topographies at subnanometer-resolution reveal asymmetry and sidedness of aquaporin-1. J Mol Biol. 1996 Dec 20;264(5):907–918. doi: 10.1006/jmbi.1996.0686. [DOI] [PubMed] [Google Scholar]
  28. Weiler J. M., Freiman P., Sharath M. D., Metzger W. J., Smith J. M., Richerson H. B., Ballas Z. K., Halverson P. C., Shulan D. J., Matsuo S. Serious adverse reactions to protamine sulfate: are alternatives needed? J Allergy Clin Immunol. 1985 Feb;75(2):297–303. doi: 10.1016/0091-6749(85)90061-2. [DOI] [PubMed] [Google Scholar]
  29. Winkler RG, Spatz JP, Sheiko S, Möller M, Reineker P, Marti O. Imaging material properties by resonant tapping-force microscopy: A model investigation. Phys Rev B Condens Matter. 1996 Sep 15;54(12):8908–8912. doi: 10.1103/physrevb.54.8908. [DOI] [PubMed] [Google Scholar]
  30. Yip C. M., Brader M. L., DeFelippis M. R., Ward M. D. Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure. Biophys J. 1998 May;74(5):2199–2209. doi: 10.1016/S0006-3495(98)77929-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yip C. M., DeFelippis M. R., Frank B. H., Brader M. L., Ward M. D. Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly. Biophys J. 1998 Sep;75(3):1172–1179. doi: 10.1016/S0006-3495(98)74036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yip C. M., Ward M. D. Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Biophys J. 1996 Aug;71(2):1071–1078. doi: 10.1016/S0006-3495(96)79307-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang Y., Sheng S., Shao Z. Imaging biological structures with the cryo atomic force microscope. Biophys J. 1996 Oct;71(4):2168–2176. doi: 10.1016/S0006-3495(96)79418-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES