Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):487–498. doi: 10.1016/S0006-3495(00)76611-2

Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance.

B Pignataro 1, C Steinem 1, H J Galla 1, H Fuchs 1, A Janshoff 1
PMCID: PMC1300656  PMID: 10620312

Abstract

The specific adhesion of unilamellar vesicles with an average diameter of 100 nm on functionalized surfaces mediated by molecular recognition was investigated in detail. Two complementary techniques, scanning force microscopy (SFM) and quartz crystal microbalance (QCM) were used to study adhesion of liposomes consisting of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine and varying concentrations of N-((6-biotinoyl)amino)hexanoyl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (biotin-X-DHPE). Monitoring the adhesion of the receptor-doped vesicles to avidin-coated gold surfaces by QCM (f(0) = 5 MHz) revealed an increased shift in resonance frequency with increasing biotin concentration up to 10 mol% biotin-X-DHPE. To address the question of how the morphology of the liposomes changes upon adhesion and how that contributes to the resonator's frequency response, we performed a detailed analysis of the liposome morphology by SFM. We found that, with increasing biotin-concentration, the height of the liposomes decreases considerably up to the point where vesicle rupture occurs. Thus, we conclude that the unexpected high frequency shifts of the quartz crystal (>500 Hz) can be attributed to a firm attachment of the spread bilayers, in which the number of contacts is responsible for the signal. These findings are compared with one of our recent studies on cell adhesion monitored by QCM.

Full Text

The Full Text of this article is available as a PDF (382.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albersdörfer A., Feder T., Sackmann E. Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J. 1997 Jul;73(1):245–257. doi: 10.1016/S0006-3495(97)78065-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Goormaghtigh E., Scarborough G. A. Density-based separation of liposomes by glycerol gradient centrifugation. Anal Biochem. 1986 Nov 15;159(1):122–131. doi: 10.1016/0003-2697(86)90316-7. [DOI] [PubMed] [Google Scholar]
  4. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  5. Laney D. E., Garcia R. A., Parsons S. M., Hansma H. G. Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. Biophys J. 1997 Feb;72(2 Pt 1):806–813. doi: 10.1016/s0006-3495(97)78714-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Müller D. J., Amrein M., Engel A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol. 1997 Jul;119(2):172–188. doi: 10.1006/jsbi.1997.3875. [DOI] [PubMed] [Google Scholar]
  7. Müller D. J., Schoenenberger C. A., Schabert F., Engel A. Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J Struct Biol. 1997 Jul;119(2):149–157. doi: 10.1006/jsbi.1997.3878. [DOI] [PubMed] [Google Scholar]
  8. Pignataro B., Conte E., Scandurra A., Marletta G. Improved cell adhesion to ion beam-irradiated polymer surfaces. Biomaterials. 1997 Nov;18(22):1461–1470. doi: 10.1016/s0142-9612(97)00090-2. [DOI] [PubMed] [Google Scholar]
  9. Plant A. L., Gueguetchkeri M., Yap W. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophys J. 1994 Sep;67(3):1126–1133. doi: 10.1016/S0006-3495(94)80579-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Seifert U. Adhesion of vesicles in two dimensions. Phys Rev A. 1991 Jun 15;43(12):6803–6814. doi: 10.1103/physreva.43.6803. [DOI] [PubMed] [Google Scholar]
  11. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  12. Steinem C., Janshoff A., Ulrich W. P., Sieber M., Galla H. J. Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim Biophys Acta. 1996 Mar 13;1279(2):169–180. doi: 10.1016/0005-2736(95)00274-x. [DOI] [PubMed] [Google Scholar]
  13. Wegener J., Janshoff A., Galla H. J. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J. 1999;28(1):26–37. doi: 10.1007/s002490050180. [DOI] [PubMed] [Google Scholar]
  14. Yun K., Kobatake E., Haruyama T., Laukkanen M. L., Keinänen K., Aizawa M. Use of a quartz crystal microbalance to monitor immunoliposome--antigen interaction. Anal Chem. 1998 Jan 15;70(2):260–264. doi: 10.1021/ac970234+. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES