Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):626–651. doi: 10.1016/S0006-3495(00)76622-7

An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor.

D Walz 1, S R Caplan 1
PMCID: PMC1300667  PMID: 10653777

Abstract

A mechanism coupling the transmembrane flow of protons to the rotation of the bacterial flagellum is studied. The coupling is accomplished by means of an array of tilted rows of positive and negative charges around the circumference of the rotor, which interacts with a linear array of proton binding sites in channels. We present a rigorous treatment of the electrostatic interactions using minimal assumptions. Interactions with the transition states are included, as well as proton-proton interactions in and between channels. In assigning values to the parameters of the model, experimentally determined structural characteristics of the motor have been used. According to the model, switching and pausing occur as a consequence of modest conformational changes in the rotor. In contrast to similar approaches developed earlier, this model closely reproduces a large number of experimental findings from different laboratories, including the nonlinear behavior of the torque-frequency relation in Escherichia coli, the stoichiometry of the system in Streptococcus, and the pH-dependence of swimming speed in Bacillus subtilis.

Full Text

The Full Text of this article is available as a PDF (327.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon U., Camarena L., Surette M. G., Aguera y Arcas B., Liu Y., Leibler S., Stock J. B. Response regulator output in bacterial chemotaxis. EMBO J. 1998 Aug 3;17(15):4238–4248. doi: 10.1093/emboj/17.15.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin J. M., Henderson R., Beckman E., Zemlin F. Images of purple membrane at 2.8 A resolution obtained by cryo-electron microscopy. J Mol Biol. 1988 Aug 5;202(3):585–591. doi: 10.1016/0022-2836(88)90288-4. [DOI] [PubMed] [Google Scholar]
  3. Berg H. C., Turner L. Torque generated by the flagellar motor of Escherichia coli. Biophys J. 1993 Nov;65(5):2201–2216. doi: 10.1016/S0006-3495(93)81278-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berry R. M., Berg H. C. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14433–14437. doi: 10.1073/pnas.94.26.14433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry R. M., Berg H. C. Torque generated by the bacterial flagellar motor close to stall. Biophys J. 1996 Dec;71(6):3501–3510. doi: 10.1016/S0006-3495(96)79545-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berry R. M., Berg H. C. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys J. 1999 Jan;76(1 Pt 1):580–587. doi: 10.1016/S0006-3495(99)77226-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berry R. M. Torque and switching in the bacterial flagellar motor. An electrostatic model. Biophys J. 1993 Apr;64(4):961–973. doi: 10.1016/S0006-3495(93)81462-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berry R. M., Turner L., Berg H. C. Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys J. 1995 Jul;69(1):280–286. doi: 10.1016/S0006-3495(95)79900-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blair D. F., Berg H. C. Restoration of torque in defective flagellar motors. Science. 1988 Dec 23;242(4886):1678–1681. doi: 10.1126/science.2849208. [DOI] [PubMed] [Google Scholar]
  10. Block S. M., Berg H. C. Successive incorporation of force-generating units in the bacterial rotary motor. 1984 May 31-Jun 6Nature. 309(5967):470–472. doi: 10.1038/309470a0. [DOI] [PubMed] [Google Scholar]
  11. Braun T. F., Poulson S., Gully J. B., Empey J. C., Van Way S., Putnam A., Blair D. F. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J Bacteriol. 1999 Jun;181(11):3542–3551. doi: 10.1128/jb.181.11.3542-3551.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caplan S. R., Kara-Ivanov M. The bacterial flagellar motor. Int Rev Cytol. 1993;147:97–164. doi: 10.1016/s0074-7696(08)60767-6. [DOI] [PubMed] [Google Scholar]
  13. Doering C., Ermentrout B., Oster G. Rotary DNA motors. Biophys J. 1995 Dec;69(6):2256–2267. doi: 10.1016/S0006-3495(95)80096-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisenbach M., Caplan S. R. Bacterial chemotaxis: unsolved mystery of the flagellar switch. Curr Biol. 1998 Jun 18;8(13):R444–R446. doi: 10.1016/s0960-9822(98)70288-x. [DOI] [PubMed] [Google Scholar]
  15. Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
  16. Elston T. C., Oster G. Protein turbines. I: The bacterial flagellar motor. Biophys J. 1997 Aug;73(2):703–721. doi: 10.1016/S0006-3495(97)78104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Felle H., Porter J. S., Slayman C. L., Kaback H. R. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry. 1980 Jul 22;19(15):3585–3590. doi: 10.1021/bi00556a026. [DOI] [PubMed] [Google Scholar]
  18. Francis N. R., Sosinsky G. E., Thomas D., DeRosier D. J. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol. 1994 Jan 28;235(4):1261–1270. doi: 10.1006/jmbi.1994.1079. [DOI] [PubMed] [Google Scholar]
  19. Fung D. C., Berg H. C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature. 1995 Jun 29;375(6534):809–812. doi: 10.1038/375809a0. [DOI] [PubMed] [Google Scholar]
  20. Harvey S. C. Treatment of electrostatic effects in macromolecular modeling. Proteins. 1989;5(1):78–92. doi: 10.1002/prot.340050109. [DOI] [PubMed] [Google Scholar]
  21. Hirota N., Matsuura S., Mochizuki N., Mutoh N., Imae Y. Use of lipophilic cation-permeable mutants for measurement of transmembrane electrical potential in metabolizing cells of Escherichia coli. J Bacteriol. 1981 Nov;148(2):399–405. doi: 10.1128/jb.148.2.399-405.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iwazawa J., Imae Y., Kobayasi S. Study of the torque of the bacterial flagellar motor using a rotating electric field. Biophys J. 1993 Mar;64(3):925–933. doi: 10.1016/S0006-3495(93)81454-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kami-ike N., Kudo S., Hotani H. Rapid changes in flagellar rotation induced by external electric pulses. Biophys J. 1991 Dec;60(6):1350–1355. doi: 10.1016/S0006-3495(91)82172-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kara-Ivanov M., Eisenbach M., Caplan S. R. Fluctuations in rotation rate of the flagellar motor of Escherichia coli. Biophys J. 1995 Jul;69(1):250–263. doi: 10.1016/S0006-3495(95)79896-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kashket E. R. Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli. Biochemistry. 1982 Oct 26;21(22):5534–5538. doi: 10.1021/bi00265a024. [DOI] [PubMed] [Google Scholar]
  26. Khan S., Dapice M., Humayun I. Energy transduction in the bacterial flagellar motor. Effects of load and pH. Biophys J. 1990 Apr;57(4):779–796. doi: 10.1016/S0006-3495(90)82598-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Khan S., Dapice M., Reese T. S. Effects of mot gene expression on the structure of the flagellar motor. J Mol Biol. 1988 Aug 5;202(3):575–584. doi: 10.1016/0022-2836(88)90287-2. [DOI] [PubMed] [Google Scholar]
  28. Khan S., Ivey D. M., Krulwich T. A. Membrane ultrastructure of alkaliphilic Bacillus species studied by rapid-freeze electron microscopy. J Bacteriol. 1992 Aug;174(15):5123–5126. doi: 10.1128/jb.174.15.5123-5126.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kihara M., Homma M., Kutsukake K., Macnab R. M. Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol. 1989 Jun;171(6):3247–3257. doi: 10.1128/jb.171.6.3247-3257.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lapidus I. R., Welch M., Eisenbach M. Pausing of flagellar rotation is a component of bacterial motility and chemotaxis. J Bacteriol. 1988 Aug;170(8):3627–3632. doi: 10.1128/jb.170.8.3627-3632.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lloyd S. A., Blair D. F. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol. 1997 Mar 7;266(4):733–744. doi: 10.1006/jmbi.1996.0836. [DOI] [PubMed] [Google Scholar]
  32. Lloyd S. A., Whitby F. G., Blair D. F., Hill C. P. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature. 1999 Jul 29;400(6743):472–475. doi: 10.1038/22794. [DOI] [PubMed] [Google Scholar]
  33. Läuger P. Ion transport and rotation of bacterial flagella. Nature. 1977 Jul 28;268(5618):360–362. doi: 10.1038/268360a0. [DOI] [PubMed] [Google Scholar]
  34. Läuger P. Torque and rotation rate of the bacterial flagellar motor. Biophys J. 1988 Jan;53(1):53–65. doi: 10.1016/S0006-3495(88)83065-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Meister M., Caplan S. R., Berg H. C. Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force. Biophys J. 1989 May;55(5):905–914. doi: 10.1016/S0006-3495(89)82889-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Meister M., Lowe G., Berg H. C. The proton flux through the bacterial flagellar motor. Cell. 1987 Jun 5;49(5):643–650. doi: 10.1016/0092-8674(87)90540-x. [DOI] [PubMed] [Google Scholar]
  37. Samuel A. D., Berg H. C. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3502–3506. doi: 10.1073/pnas.92.8.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Samuel A. D., Berg H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys J. 1996 Aug;71(2):918–923. doi: 10.1016/S0006-3495(96)79295-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schuster S. C., Khan S. The bacterial flagellar motor. Annu Rev Biophys Biomol Struct. 1994;23:509–539. doi: 10.1146/annurev.bb.23.060194.002453. [DOI] [PubMed] [Google Scholar]
  40. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  41. Sharp L. L., Zhou J., Blair D. F. Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7946–7950. doi: 10.1073/pnas.92.17.7946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shioi J. I., Galloway R. J., Niwano M., Chinnock R. E., Taylor B. L. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982 Jul 25;257(14):7969–7975. [PubMed] [Google Scholar]
  43. Shioi J. I., Matsuura S., Imae Y. Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol. 1980 Dec;144(3):891–897. doi: 10.1128/jb.144.3.891-897.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shioi J., Taylor B. L. Oxygen taxis and proton motive force in Salmonella typhimurium. J Biol Chem. 1984 Sep 10;259(17):10983–10988. [PubMed] [Google Scholar]
  45. Sosinsky G. E., Francis N. R., Stallmeyer M. J., DeRosier D. J. Substructure of the flagellar basal body of Salmonella typhimurium. J Mol Biol. 1992 Jan 5;223(1):171–184. doi: 10.1016/0022-2836(92)90724-x. [DOI] [PubMed] [Google Scholar]
  46. Turner L., Caplan S. R., Berg H. C. Temperature-induced switching of the bacterial flagellar motor. Biophys J. 1996 Oct;71(4):2227–2233. doi: 10.1016/S0006-3495(96)79425-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Turner L., Samuel A. D., Stern A. S., Berg H. C. Temperature dependence of switching of the bacterial flagellar motor by the protein CheY(13DK106YW). Biophys J. 1999 Jul;77(1):597–603. doi: 10.1016/S0006-3495(99)76916-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Walz D., Caplan S. R. Energy coupling and thermokinetic balancing in enzyme kinetics. Microscopic reversibility and detailed balance revisited. Cell Biophys. 1988 Jan-Jun;12:13–28. doi: 10.1007/BF02918348. [DOI] [PubMed] [Google Scholar]
  49. Walz T., Typke D., Smith B. L., Agre P., Engel A. Projection map of aquaporin-1 determined by electron crystallography. Nat Struct Biol. 1995 Sep;2(9):730–732. doi: 10.1038/nsb0995-730. [DOI] [PubMed] [Google Scholar]
  50. Zhao R., Amsler C. D., Matsumura P., Khan S. FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J Bacteriol. 1996 Jan;178(1):258–265. doi: 10.1128/jb.178.1.258-265.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhou J., Lloyd S. A., Blair D. F. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436–6441. doi: 10.1073/pnas.95.11.6436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES