Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):668–682. doi: 10.1016/S0006-3495(00)76625-2

Molecular dynamics simulations of the d(CCAACGTTGG)(2) decamer: influence of the crystal environment.

D R Bevan 1, L Li 1, L G Pedersen 1, T A Darden 1
PMCID: PMC1300670  PMID: 10653780

Abstract

Molecular dynamics (MD) simulations of the DNA duplex d(CCAACGTTGG)(2) were used to study the relationship between DNA sequence and structure. Two crystal simulations were carried out; one consisted of one unit cell containing two duplexes, and the other of two unit cells containing four duplexes. Two solution simulations were also carried out, one starting from canonical B-DNA and the other starting from the crystal structure. For many helicoidal parameters, the results from the crystal and solution simulations were essentially identical. However, for other parameters, in particular, alpha, gamma, delta, (epsilon - zeta), phase, and helical twist, differences between crystal and solution simulations were apparent. Notably, during crystal simulations, values of helical twist remained comparable to those in the crystal structure, to include the sequence-dependent differences among base steps, in which values ranged from 20 degrees to 50 degrees per base step. However, in the solution simulations, not only did the average values of helical twist decrease to approximately 30 degrees per base step, but every base step was approximately 30 degrees, suggesting that the sequence-dependent information may be lost. This study reveals that MD simulations of the crystal environment complement solution simulations in validating the applicability of MD to the analysis of DNA structure.

Full Text

The Full Text of this article is available as a PDF (282.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman H. M., Olson W. K., Beveridge D. L., Westbrook J., Gelbin A., Demeny T., Hsieh S. H., Srinivasan A. R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992 Sep;63(3):751–759. doi: 10.1016/S0006-3495(92)81649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boutonnet N., Hui X., Zakrzewska K. Looking into the grooves of DNA. Biopolymers. 1993 Mar;33(3):479–490. doi: 10.1002/bip.360330314. [DOI] [PubMed] [Google Scholar]
  3. Cheatham T. E., 3rd, Cieplak P., Kollman P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn. 1999 Feb;16(4):845–862. doi: 10.1080/07391102.1999.10508297. [DOI] [PubMed] [Google Scholar]
  4. Cheatham T. E., 3rd, Kollman P. A. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol. 1996 Jun 14;259(3):434–444. doi: 10.1006/jmbi.1996.0330. [DOI] [PubMed] [Google Scholar]
  5. Cowan J. A., Huang H. W., Hsu L. Y. Sequence selective coordination of Mg2+(aq) to DNA. J Inorg Biochem. 1993 Nov 1;52(2):121–129. doi: 10.1016/0162-0134(93)85028-7. [DOI] [PubMed] [Google Scholar]
  6. Darden T., Perera L., Li L., Pedersen L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure. 1999 Mar 15;7(3):R55–R60. doi: 10.1016/s0969-2126(99)80033-1. [DOI] [PubMed] [Google Scholar]
  7. Dickerson R. E. DNA structure from A to Z. Methods Enzymol. 1992;211:67–111. doi: 10.1016/0076-6879(92)11007-6. [DOI] [PubMed] [Google Scholar]
  8. Dickerson R. E., Goodsell D. S., Neidle S. "...the tyranny of the lattice...". Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3579–3583. doi: 10.1073/pnas.91.9.3579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
  10. Gorin A. A., Zhurkin V. B., Olson W. K. B-DNA twisting correlates with base-pair morphology. J Mol Biol. 1995 Mar 17;247(1):34–48. doi: 10.1006/jmbi.1994.0120. [DOI] [PubMed] [Google Scholar]
  11. Hartmann B., Lavery R. DNA structural forms. Q Rev Biophys. 1996 Dec;29(4):309–368. doi: 10.1017/s0033583500005874. [DOI] [PubMed] [Google Scholar]
  12. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  13. Hunter C. A. Sequence-dependent DNA structure. Bioessays. 1996 Feb;18(2):157–162. doi: 10.1002/bies.950180212. [DOI] [PubMed] [Google Scholar]
  14. Jayaram B., Beyeridge D. L. Modeling DNA in aqueous solutions: theoretical and computer simulation studies on the ion atmosphere of DNA. Annu Rev Biophys Biomol Struct. 1996;25:367–394. doi: 10.1146/annurev.bb.25.060196.002055. [DOI] [PubMed] [Google Scholar]
  15. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  16. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  17. Privé G. G., Yanagi K., Dickerson R. E. Structure of the B-DNA decamer C-C-A-A-C-G-T-T-G-G and comparison with isomorphous decamers C-C-A-A-G-A-T-T-G-G and C-C-A-G-G-C-C-T-G-G. J Mol Biol. 1991 Jan 5;217(1):177–199. doi: 10.1016/0022-2836(91)90619-h. [DOI] [PubMed] [Google Scholar]
  18. Pörschke D. The mode of Mg++ binding to oligonucleotides. Inner sphere complexes as markers for recognition? Nucleic Acids Res. 1979 Mar;6(3):883–898. doi: 10.1093/nar/6.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramakrishnan B., Sundaralingam M. Crystal packing effects on A-DNA helix parameters: a comparative study of the isoforms of the tetragonal & hexagonal family of octamers with differing base sequences. J Biomol Struct Dyn. 1993 Aug;11(1):11–26. doi: 10.1080/07391102.1993.10508706. [DOI] [PubMed] [Google Scholar]
  20. Sarma R. H., Sarma M. H., Dai L., Umemoto K. GC rich DNA oligonucleotides with narrow minor groove width. FEBS Lett. 1997 Nov 24;418(1-2):76–82. doi: 10.1016/s0014-5793(97)01351-3. [DOI] [PubMed] [Google Scholar]
  21. Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
  22. Shui X., Sines C. C., McFail-Isom L., VanDerveer D., Williams L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998 Dec 1;37(48):16877–16887. doi: 10.1021/bi982063o. [DOI] [PubMed] [Google Scholar]
  23. Tippin D. B., Sundaralingam M. Comparison of major groove hydration in isomorphous A-DNA octamers and dependence on base sequence and local helix geometry. Biochemistry. 1997 Jan 21;36(3):536–543. doi: 10.1021/bi9615194. [DOI] [PubMed] [Google Scholar]
  24. York D. M., Wlodawer A., Pedersen L. G., Darden T. A. Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8715–8718. doi: 10.1073/pnas.91.18.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES