Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):683–693. doi: 10.1016/S0006-3495(00)76626-4

Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin.

E Tajkhorshid 1, J Baudry 1, K Schulten 1, S Suhai 1
PMCID: PMC1300671  PMID: 10653781

Abstract

The planarity of the polyene chain of the retinal chromophore in bacteriorhodopsin is studied using molecular dynamics simulation techniques and applying different force-field parameters and starting crystal structures. The largest deviations from a planar structure are observed for the C(13)==C(14) and C(15)==N(16) double bonds in the retinal Schiff base structure. The other dihedral angles along the polyene chain of the chromophore, although having lower torsional barriers in some cases, do not significantly deviate from the planar structure. The results of the simulations of different mutants of the pigment show that, among the studied amino acids of the binding pocket, the side chain of Trp-86 has the largest impact on the planarity of retinal, and the mutation of this amino acid to alanine leads to chromophore planarity. Deletion of the methyl C(20), removal of a water molecule hydrogen-bonded to H(15), or mutation of other amino acids to alanine did not show any significant influence on the distortion of the chromophore. The results from the present study suggest the importance of the bulky residue of Trp-86 in the isomerization process, in both ground and excited states of the chromophore, and in fine-tuning of the pK(a) of the retinal protonated Schiff base in bacteriorhodopsin. The dark adaptation of the pigment and the last step of the bacteriorhodopsin photocycle imply low barriers against the rotation of the double bonds in the Schiff base region. The twisted double bonds found in the present study are consistent with the proposed mechanism of these ground state isomerization events.

Full Text

The Full Text of this article is available as a PDF (115.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balashov S. P., Govindjee R., Imasheva E. S., Misra S., Ebrey T. G., Feng Y., Crouch R. K., Menick D. R. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry. 1995 Jul 11;34(27):8820–8834. doi: 10.1021/bi00027a034. [DOI] [PubMed] [Google Scholar]
  2. Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baudry J., Crouzy S., Roux B., Smith J. C. Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin. Biophys J. 1999 Apr;76(4):1909–1917. doi: 10.1016/S0006-3495(99)77349-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Nun M., Molnar F., Lu H., Phillips J. C., Martínez T. J., Schulten K. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Faraday Discuss. 1998;(110):447–520. doi: 10.1039/a801310a. [DOI] [PubMed] [Google Scholar]
  5. Druckmann S., Ottolenghi M., Pande A., Pande J., Callender R. H. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry. 1982 Sep 28;21(20):4953–4959. doi: 10.1021/bi00263a019. [DOI] [PubMed] [Google Scholar]
  6. Dupuis P., Hárosi F. I., Sándorfy C., Leclercq J. M., Vocelle D. First step in vision: proton transfer or isomerization? Rev Can Biol. 1980 Dec;39(4):247–258. [PubMed] [Google Scholar]
  7. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrand M., Zaccai G., Nina M., Smith J. C., Etchebest C., Roux B. Structure and dynamics of bacteriorhodopsin. Comparison of simulation and experiment. FEBS Lett. 1993 Aug 2;327(3):256–260. doi: 10.1016/0014-5793(93)80999-b. [DOI] [PubMed] [Google Scholar]
  9. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  10. Harbison G. S., Smith S. O., Pardoen J. A., Courtin J. M., Lugtenburg J., Herzfeld J., Mathies R. A., Griffin R. G. Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry. 1985 Nov 19;24(24):6955–6962. doi: 10.1021/bi00345a031. [DOI] [PubMed] [Google Scholar]
  11. Henderson R. The purple membrane from Halobacterium halobium. Annu Rev Biophys Bioeng. 1977;6:87–109. doi: 10.1146/annurev.bb.06.060177.000511. [DOI] [PubMed] [Google Scholar]
  12. Hermone A., Kuczera K. Free-energy simulations of the retinal cis --> trans isomerization in bacteriorhodopsin. Biochemistry. 1998 Mar 3;37(9):2843–2853. doi: 10.1021/bi9717789. [DOI] [PubMed] [Google Scholar]
  13. Krebs M. P., Khorana H. G. Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol. 1993 Mar;175(6):1555–1560. doi: 10.1128/jb.175.6.1555-1560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
  15. Logunov I., Humphrey W., Schulten K., Sheves M. Molecular dynamics study of the 13-cis form (bR548) of bacteriorhodopsin and its photocycle. Biophys J. 1995 Apr;68(4):1270–1282. doi: 10.1016/S0006-3495(95)80301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Logunov S. L., el-Sayed M. A., Lanyi J. K. Replacement effects of neutral amino acid residues of different molecular volumes in the retinal binding cavity of bacteriorhodopsin on the dynamics of its primary process. Biophys J. 1996 Jun;70(6):2875–2881. doi: 10.1016/S0006-3495(96)79857-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
  18. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  19. Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
  20. Nakayama T. A., Zhang W., Cowan A., Kung M. Mutagenesis studies of human red opsin: trp-281 is essential for proper folding and protein-retinal interactions. Biochemistry. 1998 Dec 15;37(50):17487–17494. doi: 10.1021/bi982077u. [DOI] [PubMed] [Google Scholar]
  21. Nina M., Roux B., Smith J. C. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J. 1995 Jan;68(1):25–39. doi: 10.1016/S0006-3495(95)80184-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oesterhelt D. Bacteriorhodopsin as an example of a light-driven proton pump. Angew Chem Int Ed Engl. 1976 Jan;15(1):17–24. doi: 10.1002/anie.197600171. [DOI] [PubMed] [Google Scholar]
  23. Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oesterhelt D., Tittor J., Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):181–191. doi: 10.1007/BF00762676. [DOI] [PubMed] [Google Scholar]
  25. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  26. Rothschild K. J. FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr. 1992 Apr;24(2):147–167. doi: 10.1007/BF00762674. [DOI] [PubMed] [Google Scholar]
  27. Rousso I., Friedman N., Sheves M., Ottolenghi M. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Biochemistry. 1995 Sep 19;34(37):12059–12065. doi: 10.1021/bi00037a049. [DOI] [PubMed] [Google Scholar]
  28. Roux B., Nina M., Pomès R., Smith J. C. Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J. 1996 Aug;71(2):670–681. doi: 10.1016/S0006-3495(96)79267-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scheiner S., Duan X. Effect of intermolecular orientation upon proton transfer within a polarizable medium. Biophys J. 1991 Oct;60(4):874–883. doi: 10.1016/S0006-3495(91)82121-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scheiner S., Hillenbrand E. A. Modification of pK values caused by change in H-bond geometry. Proc Natl Acad Sci U S A. 1985 May;82(9):2741–2745. doi: 10.1073/pnas.82.9.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schreckenbach T., Walckhoff B., Oesterhelt D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry. 1978 Dec 12;17(25):5353–5359. doi: 10.1021/bi00618a005. [DOI] [PubMed] [Google Scholar]
  32. Sheves M., Albeck A., Friedman N., Ottolenghi M. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. Proc Natl Acad Sci U S A. 1986 May;83(10):3262–3266. doi: 10.1073/pnas.83.10.3262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Song L., El-Sayed M. A., Lanyi J. K. Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis. Science. 1993 Aug 13;261(5123):891–894. doi: 10.1126/science.261.5123.891. [DOI] [PubMed] [Google Scholar]
  34. Tavan P., Schulten K., Oesterhelt D. The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases. Biophys J. 1985 Mar;47(3):415–430. doi: 10.1016/S0006-3495(85)83933-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Volkov V., Svirko Y. P., Kamalov V. F., Song L., El-Sayed M. A. Optical rotation of the second harmonic radiation from retinal in bacteriorhodopsin monomers in Langmuir-Blodgett film: evidence for nonplanar retinal structure. Biophys J. 1997 Dec;73(6):3164–3170. doi: 10.1016/S0006-3495(97)78342-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Warshel A. Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium. Photochem Photobiol. 1979 Aug;30(2):285–290. doi: 10.1111/j.1751-1097.1979.tb07148.x. [DOI] [PubMed] [Google Scholar]
  37. Warshel A., Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976 May 15;103(2):227–249. doi: 10.1016/0022-2836(76)90311-9. [DOI] [PubMed] [Google Scholar]
  38. Weidlich O., Schalt B., Friedman N., Sheves M., Lanyi J. K., Brown L. S., Siebert F. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Biochemistry. 1996 Aug 20;35(33):10807–10814. doi: 10.1021/bi960780h. [DOI] [PubMed] [Google Scholar]
  39. Wu S., El-Sayed M. A. CD spectrum of bacteriorhodopsin: Best evidence against exciton model. Biophys J. 1991 Jul;60(1):190–197. doi: 10.1016/S0006-3495(91)82042-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xu D., Martin C., Schulten K. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates. Biophys J. 1996 Jan;70(1):453–460. doi: 10.1016/S0006-3495(96)79588-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xu D., Sheves M., Schulten K. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin. Biophys J. 1995 Dec;69(6):2745–2760. doi: 10.1016/S0006-3495(95)80146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de Groot H. J., Harbison G. S., Herzfeld J., Griffin R. G. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry. 1989 Apr 18;28(8):3346–3353. doi: 10.1021/bi00434a033. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES