Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):719–730. doi: 10.1016/S0006-3495(00)76630-6

Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.

J García De La Torre 1, M L Huertas 1, B Carrasco 1
PMCID: PMC1300675  PMID: 10653785

Abstract

The solution properties, including hydrodynamic quantities and the radius of gyration, of globular proteins are calculated from their detailed, atomic-level structure, using bead-modeling methodologies described in our previous article (, Biophys. J. 76:3044-3057). We review how this goal has been pursued by other authors in the past. Our procedure starts from a list of atomic coordinates, from which we build a primary hydrodynamic model by replacing nonhydrogen atoms with spherical elements of some fixed radius. The resulting particle, consisting of overlapping spheres, is in turn represented by a shell model treated as described in our previous work. We have applied this procedure to a set of 13 proteins. For each protein, the atomic element radius is adjusted, to fit all of the hydrodynamic properties, taking values close to 3 A, with deviations that fall within the error of experimental data. Some differences are found in the atomic element radius found for each protein, which can be explained in terms of protein hydration. A computational shortcut makes the procedure feasible, even in personal computers. All of the model-building and calculations are carried out with a HYDROPRO public-domain computer program.

Full Text

The Full Text of this article is available as a PDF (233.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison S. A., Tran V. T. Modeling the electrophoresis of rigid polyions: application to lysozyme. Biophys J. 1995 Jun;68(6):2261–2270. doi: 10.1016/S0006-3495(95)80408-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allison S. A., Wang H., Laue T. M., Wilson T. J., Wooll J. O. Visualizing ion relaxation in the transport of short DNA fragments. Biophys J. 1999 May;76(5):2488–2501. doi: 10.1016/S0006-3495(99)77404-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antosiewicz J. Computation of the dipole moments of proteins. Biophys J. 1995 Oct;69(4):1344–1354. doi: 10.1016/S0006-3495(95)80001-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antosiewicz J., Porschke D. Electrostatics of hemoglobins from measurements of the electric dichroism and computer simulations. Biophys J. 1995 Feb;68(2):655–664. doi: 10.1016/S0006-3495(95)80226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloomfield V. A. Hydrodynamic studies of structure of biological macromolecules. Experimental and theoretical advances yield structural details of proteins, DNA, viruses, and polysomes. Science. 1968 Sep 20;161(3847):1212–1219. doi: 10.1126/science.161.3847.1212. [DOI] [PubMed] [Google Scholar]
  6. Bloomfield V., Dalton W. O., Van Holde K. E. Frictional coefficients of multisubunit structures. I. Theory. Biopolymers. 1967 Feb;5(2):135–148. doi: 10.1002/bip.1967.360050202. [DOI] [PubMed] [Google Scholar]
  7. Bloomfield V., Van Holde K. E., Dalton W. O. Frictional coefficients of multisubunit structures. II. Application to proteins and viruses. Biopolymers. 1967 Feb;5(2):149–159. doi: 10.1002/bip.1967.360050203. [DOI] [PubMed] [Google Scholar]
  8. Brune D., Kim S. Predicting protein diffusion coefficients. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3835–3839. doi: 10.1073/pnas.90.9.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byron O. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J. 1997 Jan;72(1):408–415. doi: 10.1016/S0006-3495(97)78681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carrasco B., García de la Torre J. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys J. 1999 Jun;76(6):3044–3057. doi: 10.1016/S0006-3495(99)77457-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrasco B., García de la Torre J., Zipper P. Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres. Eur Biophys J. 1999;28(6):510–515. doi: 10.1007/s002490050233. [DOI] [PubMed] [Google Scholar]
  12. Chacón P., Morán F., Díaz J. F., Pantos E., Andreu J. M. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J. 1998 Jun;74(6):2760–2775. doi: 10.1016/S0006-3495(98)77984-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chae K. S., Lenhoff A. M. Computation of the electrophoretic mobility of proteins. Biophys J. 1995 Mar;68(3):1120–1127. doi: 10.1016/S0006-3495(95)80286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. De La Torre J. G., Bloomfield V. A. Hydrodynamics of macromolecular complexes. III. Bacterial viruses. Biopolymers. 1977 Aug;16(8):1779–1793. doi: 10.1002/bip.1977.360160813. [DOI] [PubMed] [Google Scholar]
  15. Filson D. P., Bloomfield V. A. Shell model calculations of rotational diffusion coefficients. Biochemistry. 1967 Jun;6(6):1650–1658. doi: 10.1021/bi00858a011. [DOI] [PubMed] [Google Scholar]
  16. Filson D. P., Bloomfield V. A. The configuration of polysomes in solution. Biochim Biophys Acta. 1968 Jan 29;155(1):169–182. doi: 10.1016/0005-2787(68)90347-x. [DOI] [PubMed] [Google Scholar]
  17. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  18. Garcia de la Torre J., Navarro S., Lopez Martinez M. C., Diaz F. G., Lopez Cascales J. J. HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophys J. 1994 Aug;67(2):530–531. doi: 10.1016/S0006-3495(94)80512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garcia de la Torre J., Navarro S., Lopez Martinez M. C. Hydrodynamic properties of a double-helical model for DNA. Biophys J. 1994 May;66(5):1573–1579. doi: 10.1016/S0006-3495(94)80949-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. García de la Torre J., Carrasco B., Harding S. E. SOLPRO: theory and computer program for the prediction of SOLution PROperties of rigid macromolecules and bioparticles. Eur Biophys J. 1997;25(5-6):361–372. doi: 10.1007/s002490050049. [DOI] [PubMed] [Google Scholar]
  21. García de la Torre J., Harding S. E., Carrasco B. Calculation of NMR relaxation, covolume, and scattering-related properties of bead models using the SOLPRO computer program. Eur Biophys J. 1999;28(2):119–132. doi: 10.1007/s002490050191. [DOI] [PubMed] [Google Scholar]
  22. García de la Torre J., Harding S. E., Carrasco B. Calculation of NMR relaxation, covolume, and scattering-related properties of bead models using the SOLPRO computer program. Eur Biophys J. 1999;28(2):119–132. doi: 10.1007/s002490050191. [DOI] [PubMed] [Google Scholar]
  23. García M. M., Jiménez Rios M. A., García Bernal J. M. Translational diffusion and intrinsic viscosity of globular proteins. Theoretical predictions using hydrated hydrodynamic models. Application to BPTI. Int J Biol Macromol. 1990 Feb;12(1):19–24. doi: 10.1016/0141-8130(90)90077-n. [DOI] [PubMed] [Google Scholar]
  24. Harding S. E., Horton J. C., Jones S., Thornton J. M., Winzor D. J. COVOL: an interactive program for evaluating second virial coefficients from the triaxial shape or dimensions of rigid macromolecules. Biophys J. 1999 May;76(5):2432–2438. doi: 10.1016/S0006-3495(99)77398-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Harding S. E. On the hydrodynamic analysis of macromolecular conformation. Biophys Chem. 1995 Jun-Jul;55(1-2):69–93. doi: 10.1016/0301-4622(94)00143-8. [DOI] [PubMed] [Google Scholar]
  26. Harding S. E. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol. 1997;68(2-3):207–262. doi: 10.1016/s0079-6107(97)00027-8. [DOI] [PubMed] [Google Scholar]
  27. Hellweg T., Eimer W., Krahn E., Schneider K., Müller A. Hydrodynamic properties of nitrogenase--the MoFe protein from Azotobacter vinelandii studied by dynamic light scattering and hydrodynamic modelling. Biochim Biophys Acta. 1997 Feb 8;1337(2):311–318. doi: 10.1016/s0167-4838(96)00179-3. [DOI] [PubMed] [Google Scholar]
  28. Kumosinski T. F., Pessen H. Estimation of sedimentation coefficients of globular proteins: an application of small-angle X-ray scattering. Arch Biochem Biophys. 1982 Nov;219(1):89–100. doi: 10.1016/0003-9861(82)90137-0. [DOI] [PubMed] [Google Scholar]
  29. Müller J. J. Prediction of the rotational diffusion behavior of biopolymers on the basis of their solution or crystal structure. Biopolymers. 1991 Feb 5;31(2):149–160. doi: 10.1002/bip.360310203. [DOI] [PubMed] [Google Scholar]
  30. Pavlov MYu, Sinev M. A., Timchenko A. A., Ptitsyn O. B. A study of apo- and holo-forms of horse liver alcohol dehydrogenase in solution by diffuse x-ray scattering. Biopolymers. 1986 Aug;25(8):1385–1397. doi: 10.1002/bip.360250803. [DOI] [PubMed] [Google Scholar]
  31. Smith P. E., van Gunsteren W. F. Translational and rotational diffusion of proteins. J Mol Biol. 1994 Feb 18;236(2):629–636. doi: 10.1006/jmbi.1994.1172. [DOI] [PubMed] [Google Scholar]
  32. Svergun D. I., Richard S., Koch M. H., Sayers Z., Kuprin S., Zaccai G. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2267–2272. doi: 10.1073/pnas.95.5.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Teller D. C., Swanson E., de Haën C. The translational friction coefficient of proteins. Methods Enzymol. 1979;61:103–124. doi: 10.1016/0076-6879(79)61010-8. [DOI] [PubMed] [Google Scholar]
  34. Venable R. M., Pastor R. W. Frictional models for stochastic simulations of proteins. Biopolymers. 1988 Jun;27(6):1001–1014. doi: 10.1002/bip.360270609. [DOI] [PubMed] [Google Scholar]
  35. Zhou X. Z. Calculation of translational friction and intrinsic viscosity. II. Application to globular proteins. Biophys J. 1995 Dec;69(6):2298–2303. doi: 10.1016/S0006-3495(95)80100-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zipper P., Durchschlag H. Recent advances in the calculation of hydrodynamic parameters from crystallographic data by multibody approaches. Biochem Soc Trans. 1998 Nov;26(4):726–731. doi: 10.1042/bst0260726. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES