Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9

Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.

J M Holopainen 1, M I Angelova 1, P K Kinnunen 1
PMCID: PMC1300685  PMID: 10653795

Abstract

Sphingomyelin is an abundant component of eukaryotic membranes. A specific enzyme, sphingomyelinase can convert this lipid to ceramide, a central second messenger in cellular signaling for apoptosis (programmed cell death), differentiation, and senescence. We used microinjection and either Hoffman modulation contrast or fluorescence microscopy of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-sphingomyelin (C16:0-SM), and Bodipy-sphingomyelin as a fluorescent tracer (molar ratio 0.75:0.20:0.05, respectively) to observe changes in lipid lateral distribution and membrane morphology upon formation of ceramide. Notably, in addition to rapid domain formation (capping), vectorial budding of vesicles, i.e., endocytosis and shedding, can be induced by the asymmetrical sphingomyelinase-catalyzed generation of ceramide in either the outer or the inner leaflet, respectively, of giant phosphatidylcholine/sphingomyelin liposomes. These results are readily explained by 1) the lateral phase separation of ceramide enriched domains, 2) the area difference between the adjacent monolayers, 3) the negative spontaneous curvature, and 4) the augmented bending rigidity of the ceramide-containing domains, leading to membrane invagination and vesiculation of the bilayer.

Full Text

The Full Text of this article is available as a PDF (336.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai J., Pagano R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry. 1997 Jul 22;36(29):8840–8848. doi: 10.1021/bi970145r. [DOI] [PubMed] [Google Scholar]
  2. Basáez G., Ruiz-Argüello M. B., Alonso A., Goñi F. M., Karlsson G., Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J. 1997 Jun;72(6):2630–2637. doi: 10.1016/S0006-3495(97)78906-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calhoun W. I., Shipley G. G. Sphingomyelin--lecithin bilayers and their interaction with cholesterol. Biochemistry. 1979 May 1;18(9):1717–1722. doi: 10.1021/bi00576a013. [DOI] [PubMed] [Google Scholar]
  4. Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans E. A. Bending resistance and chemically induced moments in membrane bilayers. Biophys J. 1974 Dec;14(12):923–931. doi: 10.1016/S0006-3495(74)85959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng S. S., MacDonald R. C. Effects of chain unsaturation on the equation of state for lipid monolayers at the air-water interface. Biophys J. 1995 Aug;69(2):460–469. doi: 10.1016/S0006-3495(95)79919-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grassmé H., Gulbins E., Brenner B., Ferlinz K., Sandhoff K., Harzer K., Lang F., Meyer T. F. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997 Nov 28;91(5):605–615. doi: 10.1016/s0092-8674(00)80448-1. [DOI] [PubMed] [Google Scholar]
  8. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  9. Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
  10. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  11. Hidari KIPJ, Ichikawa S., Fujita T., Sakiyama H., Hirabayashi Y. Complete removal of sphingolipids from the plasma membrane disrupts cell to substratum adhesion of mouse melanoma cells. J Biol Chem. 1996 Jun 14;271(24):14636–14641. doi: 10.1074/jbc.271.24.14636. [DOI] [PubMed] [Google Scholar]
  12. Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
  13. Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
  14. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun. 1996 Mar 27;220(3):834–838. doi: 10.1006/bbrc.1996.0490. [DOI] [PubMed] [Google Scholar]
  15. Jarvis W. D., Grant S., Kolesnick R. N. Ceramide and the induction of apoptosis. Clin Cancer Res. 1996 Jan;2(1):1–6. [PubMed] [Google Scholar]
  16. Johansen K. A., Gill R. E., Vasil M. L. Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun. 1996 Aug;64(8):3259–3266. doi: 10.1128/iai.64.8.3259-3266.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jülicher F, Lipowsky R. Domain-induced budding of vesicles. Phys Rev Lett. 1993 May 10;70(19):2964–2967. doi: 10.1103/PhysRevLett.70.2964. [DOI] [PubMed] [Google Scholar]
  18. Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
  19. Koynova R., Caffrey M. Phases and phase transitions of the sphingolipids. Biochim Biophys Acta. 1995 Apr 6;1255(3):213–236. doi: 10.1016/0005-2760(94)00202-a. [DOI] [PubMed] [Google Scholar]
  20. Kruth H. S. The fate of lipoprotein cholesterol entering the arterial wall. Curr Opin Lipidol. 1997 Oct;8(5):246–252. doi: 10.1097/00041433-199710000-00002. [DOI] [PubMed] [Google Scholar]
  21. Li R., Blanchette-Mackie E. J., Ladisch S. Induction of endocytic vesicles by exogenous C(6)-ceramide. J Biol Chem. 1999 Jul 23;274(30):21121–21127. doi: 10.1074/jbc.274.30.21121. [DOI] [PubMed] [Google Scholar]
  22. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  23. Lisanti M. P., Scherer P. E., Tang Z., Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994 Jul;4(7):231–235. doi: 10.1016/0962-8924(94)90114-7. [DOI] [PubMed] [Google Scholar]
  24. Liu B, Obeid LM, Hannun YA. Sphingomyelinases in cell regulation. Semin Cell Dev Biol. 1997 Jun;8(3):311–322. doi: 10.1006/scdb.1997.0153. [DOI] [PubMed] [Google Scholar]
  25. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  26. Löfgren H., Pascher I. Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem Phys Lipids. 1977 Dec;20(4):273–284. doi: 10.1016/0009-3084(77)90068-8. [DOI] [PubMed] [Google Scholar]
  27. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  28. McKeone B. J., Pownall H. J., Massey J. B. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. Biochemistry. 1986 Nov 18;25(23):7711–7716. doi: 10.1021/bi00371a064. [DOI] [PubMed] [Google Scholar]
  29. Merrill A. H., Jr, Jones D. D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990 May 1;1044(1):1–12. doi: 10.1016/0005-2760(90)90211-f. [DOI] [PubMed] [Google Scholar]
  30. Nieva J. L., Bron R., Corver J., Wilschut J. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 1994 Jun 15;13(12):2797–2804. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Parton R. G., Joggerst B., Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. doi: 10.1083/jcb.127.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pascher I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta. 1976 Dec 2;455(2):433–451. doi: 10.1016/0005-2736(76)90316-3. [DOI] [PubMed] [Google Scholar]
  33. Ruiz-Argüello M. B., Basáez G., Goñi F. M., Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996 Oct 25;271(43):26616–26621. doi: 10.1074/jbc.271.43.26616. [DOI] [PubMed] [Google Scholar]
  34. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  35. Schnorf M., Potrykus I., Neuhaus G. Microinjection technique: routine system for characterization of microcapillaries by bubble pressure measurement. Exp Cell Res. 1994 Feb;210(2):260–267. doi: 10.1006/excr.1994.1038. [DOI] [PubMed] [Google Scholar]
  36. Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
  37. Shah J., Atienza J. M., Rawlings A. V., Shipley G. G. Physical properties of ceramides: effect of fatty acid hydroxylation. J Lipid Res. 1995 Sep;36(9):1945–1955. [PubMed] [Google Scholar]
  38. Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walev I., Weller U., Strauch S., Foster T., Bhakdi S. Selective killing of human monocytes and cytokine release provoked by sphingomyelinase (beta-toxin) of Staphylococcus aureus. Infect Immun. 1996 Aug;64(8):2974–2979. doi: 10.1128/iai.64.8.2974-2979.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wick R., Angelova M. I., Walde P., Luisi P. L. Microinjection into giant vesicles and light microscopy investigation of enzyme-mediated vesicle transformations. Chem Biol. 1996 Feb;3(2):105–111. doi: 10.1016/s1074-5521(96)90286-0. [DOI] [PubMed] [Google Scholar]
  41. Zha X., Pierini L. M., Leopold P. L., Skiba P. J., Tabas I., Maxfield F. R. Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol. 1998 Jan 12;140(1):39–47. doi: 10.1083/jcb.140.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang W. Y., Gaynor P. M., Kruth H. S. Aggregated low density lipoprotein induces and enters surface-connected compartments of human monocyte-macrophages. Uptake occurs independently of the low density lipoprotein receptor. J Biol Chem. 1997 Dec 12;272(50):31700–31706. doi: 10.1074/jbc.272.50.31700. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES