Abstract
Membrane translocation of the ssRNA genome of nodaviruses has been proposed to be mediated by direct lipid-protein interactions between a postassembly autocatalytic cleavage product from the capsomere and the target membrane. We have recently shown that the 21-residue Met-->Nle variant of the N-terminal helical domain (denoted gamma(1)) of the cleavage peptide in flock house nodavirus increases membrane permeability to hydrophilic solutes and can alter both membrane structure and function, suggesting the possibility of peptide-triggered disruption of the endosomal membrane as a prelude to viral uncoating in the host cytoplasm. Elucidation of partitioning energetics would allow an assessment of the likelihood of this mechanism. We report herein complete thermodynamic characterization of the partitioning of gamma(1) to phospholipids by lipid-peptide titrations following changes in ellipticity, fluorescence signature, or calorimetric response. These experiments revealed a partitioning energy comparable to natural membrane-active peptide toxins, suggesting that the proposed mechanism may be possible. Additionally, a novel switch in the balance of partitioning forces was found: when the lipid headgroup was changed from zwitterionic to negatively charged, membrane association of the peptide became completely entropy-driven.
Full Text
The Full Text of this article is available as a PDF (160.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer S. J., Ellena J. F., Cafiso D. S. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides. Biophys J. 1991 Aug;60(2):389–398. doi: 10.1016/S0006-3495(91)82064-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beschiaschvili G., Baeuerle H. D. Effective charge of melittin upon interaction with POPC vesicles. Biochim Biophys Acta. 1991 Sep 30;1068(2):195–200. doi: 10.1016/0005-2736(91)90210-y. [DOI] [PubMed] [Google Scholar]
- Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
- Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry. 1990 Dec 11;29(49):10995–11000. doi: 10.1021/bi00501a018. [DOI] [PubMed] [Google Scholar]
- Bong D. T., Steinem C., Janshoff A., Johnson J. E., Reza Ghadiri M. A highly membrane-active peptide in Flock House virus: implications for the mechanism of nodavirus infection. Chem Biol. 1999 Jul;6(7):473–481. doi: 10.1016/s1074-5521(99)80065-9. [DOI] [PubMed] [Google Scholar]
- Böhm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992 Apr;5(3):191–195. doi: 10.1093/protein/5.3.191. [DOI] [PubMed] [Google Scholar]
- Cheng R. H., Reddy V. S., Olson N. H., Fisher A. J., Baker T. S., Johnson J. E. Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure. 1994 Apr 15;2(4):271–282. doi: 10.1016/s0969-2126(00)00029-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmas B., Hunter G. J., Bannister W. H. Prediction of protein secondary structure from circular dichroism spectra using artificial neural network techniques. Biochem Mol Biol Int. 1994 Aug;34(1):17–26. [PubMed] [Google Scholar]
- Fisher A. J., Johnson J. E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature. 1993 Jan 14;361(6408):176–179. doi: 10.1038/361176a0. [DOI] [PubMed] [Google Scholar]
- Hosur M. V., Schmidt T., Tucker R. C., Johnson J. E., Gallagher T. M., Selling B. H., Rueckert R. R. Structure of an insect virus at 3.0 A resolution. Proteins. 1987;2(3):167–176. doi: 10.1002/prot.340020302. [DOI] [PubMed] [Google Scholar]
- Janin J., Chothia C. Role of hydrophobicity in the binding of coenzymes. Appendix. Translational and rotational contribution to the free energy of dissociation. Biochemistry. 1978 Jul 25;17(15):2943–2948. doi: 10.1021/bi00608a001. [DOI] [PubMed] [Google Scholar]
- Janshoff A., Bong D. T., Steinem C., Johnson J. E., Ghadiri M. R. An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes. Biochemistry. 1999 Apr 27;38(17):5328–5336. doi: 10.1021/bi982976i. [DOI] [PubMed] [Google Scholar]
- Kuchinka E., Seelig J. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry. 1989 May 16;28(10):4216–4221. doi: 10.1021/bi00436a014. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
- Montich G., Scarlata S., McLaughlin S., Lehrmann R., Seelig J. Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids. Biochim Biophys Acta. 1993 Feb 23;1146(1):17–24. doi: 10.1016/0005-2736(93)90333-u. [DOI] [PubMed] [Google Scholar]
- Munshi S., Liljas L., Cavarelli J., Bomu W., McKinney B., Reddy V., Johnson J. E. The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J Mol Biol. 1996 Aug 9;261(1):1–10. doi: 10.1006/jmbi.1996.0437. [DOI] [PubMed] [Google Scholar]
- Park S. H., Shalongo W., Stellwagen E. Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry. 1993 Jul 13;32(27):7048–7053. doi: 10.1021/bi00078a033. [DOI] [PubMed] [Google Scholar]
- Rizzo V., Stankowski S., Schwarz G. Alamethicin incorporation in lipid bilayers: a thermodynamic study. Biochemistry. 1987 May 19;26(10):2751–2759. doi: 10.1021/bi00384a015. [DOI] [PubMed] [Google Scholar]
- Schneemann A., Marshall D. Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. J Virol. 1998 Nov;72(11):8738–8746. doi: 10.1128/jvi.72.11.8738-8746.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneemann A., Zhong W., Gallagher T. M., Rueckert R. R. Maturation cleavage required for infectivity of a nodavirus. J Virol. 1992 Nov;66(11):6728–6734. doi: 10.1128/jvi.66.11.6728-6734.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnölzer M., Alewood P., Jones A., Alewood D., Kent S. B. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):180–193. doi: 10.1111/j.1399-3011.1992.tb00291.x. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):82–90. doi: 10.1016/0005-2736(89)90526-9. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Stankowski S., Rizzo V. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta. 1986 Sep 25;861(1):141–151. doi: 10.1016/0005-2736(86)90573-0. [DOI] [PubMed] [Google Scholar]
- Schwarz G. Thermodynamics and kinetics of incorporation into a membrane. Biochimie. 1989 Jan;71(1):3–9. doi: 10.1016/0300-9084(89)90125-9. [DOI] [PubMed] [Google Scholar]
- Seelig J. Titration calorimetry of lipid-peptide interactions. Biochim Biophys Acta. 1997 Mar 14;1331(1):103–116. doi: 10.1016/s0304-4157(97)00002-6. [DOI] [PubMed] [Google Scholar]
- Stankowski S., Pawlak M., Kaisheva E., Robert C. H., Schwarz G. A combined study of aggregation, membrane affinity and pore activity of natural and modified melittin. Biochim Biophys Acta. 1991 Oct 14;1069(1):77–86. doi: 10.1016/0005-2736(91)90106-i. [DOI] [PubMed] [Google Scholar]
- Stankowski S. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment. Biophys J. 1991 Aug;60(2):341–351. doi: 10.1016/S0006-3495(91)82059-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlotnick A., Reddy V. S., Dasgupta R., Schneemann A., Ray W. J., Jr, Rueckert R. R., Johnson J. E. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem. 1994 May 6;269(18):13680–13684. [PubMed] [Google Scholar]
