Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):846–856. doi: 10.1016/S0006-3495(00)76642-2

Detection of peptide-lipid interactions in mixed monolayers, using isotherms, atomic force microscopy, and fourier transform infrared analyses.

V Vié 1, N Van Mau 1, L Chaloin 1, E Lesniewska 1, C Le Grimellec 1, F Heitz 1
PMCID: PMC1300687  PMID: 10653797

Abstract

To improve the understanding of the membrane uptake of an amphipathic and positively charged vector peptide, we studied the interactions of this peptide with different phospholipids, the nature of whose polar headgroups and physical states were varied. Three lipids were considered: dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and dioleoylphosphatidylglycerol (DOPG). The approach was carried out by three complementary methods: compression isotherms of monolayers and atomic force microscopy observations associated with Fourier transform infrared investigations. From analysis of the compression isotherms, it was concluded that the peptide interacts with all lipids and with an expansion of the mean molecular area, implying that both components form nonideal mixtures. The expansion was larger in the case of DOPG than for DPPC and DPPG because of an alpha to beta conformational transition with an increase in the peptide molar fraction. Atomic force microscopy observations showed that the presence of small amounts of peptide led to the appearance of bowl-like particles and that an increase in the peptide amounts generated the formation of filaments. In the case of DOPG, filaments were found at higher peptide molar fractions than already observed for DOPC because of the presence of negatively charged lipid headgroups.

Full Text

The Full Text of this article is available as a PDF (445.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B., Ruysschaert J. M., Goormaghtigh E. Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys J. 1999 Jan;76(1 Pt 1):552–563. doi: 10.1016/S0006-3495(99)77223-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs M. S., Gierasch L. M. Molecular mechanisms of protein secretion: the role of the signal sequence. Adv Protein Chem. 1986;38:109–180. doi: 10.1016/s0065-3233(08)60527-6. [DOI] [PubMed] [Google Scholar]
  4. Brockman H. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol. 1999 Aug;9(4):438–443. doi: 10.1016/S0959-440X(99)80061-X. [DOI] [PubMed] [Google Scholar]
  5. Chaloin L., Dé E., Charnet P., Molle G., Heitz F. Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence. Biochim Biophys Acta. 1998 Oct 15;1375(1-2):52–60. doi: 10.1016/s0005-2736(98)00139-4. [DOI] [PubMed] [Google Scholar]
  6. Chaloin L., Vidal P., Heitz A., Van Mau N., Méry J., Divita G., Heitz F. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry. 1997 Sep 16;36(37):11179–11187. doi: 10.1021/bi9708491. [DOI] [PubMed] [Google Scholar]
  7. Chaloin L., Vidal P., Lory P., Méry J., Lautredou N., Divita G., Heitz F. Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem Biophys Res Commun. 1998 Feb 13;243(2):601–608. doi: 10.1006/bbrc.1997.8050. [DOI] [PubMed] [Google Scholar]
  8. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  9. Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
  10. Edidin M. Lipid microdomains in cell surface membranes. Curr Opin Struct Biol. 1997 Aug;7(4):528–532. doi: 10.1016/s0959-440x(97)80117-0. [DOI] [PubMed] [Google Scholar]
  11. Huang Z., Thompson N. L. Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes. Biophys J. 1996 Apr;70(4):2001–2007. doi: 10.1016/S0006-3495(96)79766-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  13. Lakhdar-Ghazal F., Tocanne J. F. Phase behaviour in monolayers and in water dispersions of mixtures of dimannosyl diacylglycerol with phosphatidylglycerol. Biochim Biophys Acta. 1981 Jun 22;644(2):284–294. doi: 10.1016/0005-2736(81)90386-2. [DOI] [PubMed] [Google Scholar]
  14. Maget-Dana R., Ptak M. Interactions of surfactin with membrane models. Biophys J. 1995 May;68(5):1937–1943. doi: 10.1016/S0006-3495(95)80370-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maget-Dana R., Ptak M. Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J. 1997 Nov;73(5):2527–2533. doi: 10.1016/S0006-3495(97)78281-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mou J., Czajkowsky D. M., Shao Z. Gramicidin A aggregation in supported gel state phosphatidylcholine bilayers. Biochemistry. 1996 Mar 12;35(10):3222–3226. doi: 10.1021/bi9520242. [DOI] [PubMed] [Google Scholar]
  17. Palmer A. G., 3rd, Thompson N. L. Fluorescence correlation spectroscopy for detecting submicroscopic clusters of fluorescent molecules in membranes. Chem Phys Lipids. 1989 Jun;50(3-4):253–270. doi: 10.1016/0009-3084(89)90053-4. [DOI] [PubMed] [Google Scholar]
  18. Ruano M. L., Nag K., Worthman L. A., Casals C., Pérez-Gil J., Keough K. M. Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol. Biophys J. 1998 Mar;74(3):1101–1109. doi: 10.1016/s0006-3495(98)77828-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Subramaniam S., Seul M., McConnell H. M. Lateral diffusion of specific antibodies bound to lipid monolayers on alkylated substrates. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1169–1173. doi: 10.1073/pnas.83.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids. Biophys J. 1994 Apr;66(4):1137–1148. doi: 10.1016/S0006-3495(94)80895-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Mau N., Vié V., Chaloin L., Lesniewska E., Heitz F., Le Grimellec C. Lipid-induced organization of a primary amphipathic peptide: a coupled AFM-monolayer study. J Membr Biol. 1999 Feb 1;167(3):241–249. doi: 10.1007/s002329900488. [DOI] [PubMed] [Google Scholar]
  23. Zasadzinski J. A., Viswanathan R., Madsen L., Garnaes J., Schwartz D. K. Langmuir-Blodgett films. Science. 1994 Mar 25;263(5154):1726–1733. doi: 10.1126/science.8134836. [DOI] [PubMed] [Google Scholar]
  24. ten Grotenhuis E., Demel R. A., Ponec M., Boer D. R., van Miltenburg J. C., Bouwstra J. A. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J. 1996 Sep;71(3):1389–1399. doi: 10.1016/S0006-3495(96)79341-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. von Nahmen A., Schenk M., Sieber M., Amrein M. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J. 1997 Jan;72(1):463–469. doi: 10.1016/S0006-3495(97)78687-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES