Abstract
The two glycosphingolipids galactosylceramide (GalC) and its sulfated form, cerebroside sulfate (CBS), are present at high concentrations in the multilayered myelin sheath and are involved in carbohydrate-carbohydrate interactions between the lipid headgroups. In order to study the structure of the complex of these two glycolipids by Fourier transform infrared (FTIR) spectroscopy, GalC dispersions were combined with CBS dispersions in the presence and absence of Ca(2+). The FTIR spectra indicated that a strong interaction occurred between these glycolipids even in the absence of Ca(2+). The interaction resulted in dehydration of the sulfate, changes in the intermolecular hydrogen bonding interactions of the sugar and other oxygens, decreased intermolecular hydrogen bonding of the amide C==O of GalC and dehydration of the amide region of one or both of the lipids in the mixture, and disordering of the hydrocarbon chains of both lipids. The spectra also show that Ca(2+) interacts with the sulfate of CBS. Although they do not reveal which other groups of CBS and GalC interact with Ca(2+) or which groups participate in the interaction between the two lipids, they do show that the sulfate is not directly involved in interaction with GalC, since it can still bind to Ca(2+) in the mixture. The interaction between these two lipids could be either a lateral cis interaction in the same bilayer or a trans interaction between apposed bilayers. The type of interaction between the lipids, cis or trans, was investigated using fluorescent and spin-label probes and anti-glycolipid antibodies. The results confirmed a strong interaction between the GalC and the CBS microstructures. They suggested further that this interaction caused the CBS microstructures to be disrupted so that CBS formed a single bilayer around the GalC multilayered microstructures, thus sequestering GalC from the external aqueous phase. Thus the CBS and GalC interacted via a trans interaction across apposed bilayers, which resulted in dehydration of the headgroup and interface region of both lipid bilayers. The strong interaction between these lipids may be involved in stabilization of the myelin sheath.
Full Text
The Full Text of this article is available as a PDF (110.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archibald D. D., Mann S. Self-assembled microstructures from 1,2-ethanediol suspensions of pure and binary mixtures of neutral and acidic biological galactosylceramides. Chem Phys Lipids. 1994 Jan;69(1):51–64. doi: 10.1016/0009-3084(94)90027-2. [DOI] [PubMed] [Google Scholar]
- Bansal R., Gard A. L., Pfeiffer S. E. Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid. J Neurosci Res. 1988 Oct-Dec;21(2-4):260–267. doi: 10.1002/jnr.490210218. [DOI] [PubMed] [Google Scholar]
- Benjamins J. A., Dyer C. A. Glycolipids and transmembrane signaling in oligodendroglia. Ann N Y Acad Sci. 1990;605:90–100. doi: 10.1111/j.1749-6632.1990.tb42384.x. [DOI] [PubMed] [Google Scholar]
- Boggs J. M., Koshy K. M., Rangaraj G. Influence of structural modifications on the phase behavior of semi-synthetic cerebroside sulfate. Biochim Biophys Acta. 1988 Mar 3;938(3):361–372. doi: 10.1016/0005-2736(88)90134-4. [DOI] [PubMed] [Google Scholar]
- Crook S. J., Stewart R., Boggs J. M., Vistnes A. I., Zalc B. Characterization of anti-cerebroside sulfate antisera using a theoretical model to analyse liposome immune lysis data. Mol Immunol. 1987 Nov;24(11):1135–1143. doi: 10.1016/0161-5890(87)90159-3. [DOI] [PubMed] [Google Scholar]
- Curatolo W., Neuringer L. J. The effects of cerebrosides on model membrane shape. J Biol Chem. 1986 Dec 25;261(36):17177–17182. [PubMed] [Google Scholar]
- Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem. 1989 Jun 5;264(16):9476–9484. [PubMed] [Google Scholar]
- Goldstein A. S., Lukyanov A. N., Carlson P. A., Yager P., Gelb M. H. Formation of high-axial-ratio-microstructures from natural and synthetic sphingolipids. Chem Phys Lipids. 1997 Aug 8;88(1):21–36. doi: 10.1016/s0009-3084(97)00042-x. [DOI] [PubMed] [Google Scholar]
- Goux W. J., Smith H., Sparkman D. R. Assembly of Alzheimer-like, insoluble filaments from brain cerebrosides. Neurosci Lett. 1995 Jun 16;192(3):149–152. doi: 10.1016/0304-3940(95)11628-a. [DOI] [PubMed] [Google Scholar]
- Hakomori S. Tumor-associated carbohydrate antigens. Annu Rev Immunol. 1984;2:103–126. doi: 10.1146/annurev.iy.02.040184.000535. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Düzgüneş N. Lipid mixing assays to determine fusion in liposome systems. Methods Enzymol. 1993;220:15–32. doi: 10.1016/0076-6879(93)20070-j. [DOI] [PubMed] [Google Scholar]
- Hollingshead C. J., Caspar D. L., Melchior V., Kirschner D. A. Compaction and particle segregation in myelin membrane arrays. J Cell Biol. 1981 Jun;89(3):631–644. doi: 10.1083/jcb.89.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. Membrane interactions in nerve myelin: II. Determination of surface charge from biochemical data. Biophys J. 1988 Feb;53(2):247–260. doi: 10.1016/S0006-3495(88)83086-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
- Koshy K. M., Boggs J. M. Investigation of the calcium-mediated association between the carbohydrate head groups of galactosylceramide and galactosylceramide I3 sulfate by electrospray ionization mass spectrometry. J Biol Chem. 1996 Feb 16;271(7):3496–3499. doi: 10.1074/jbc.271.7.3496. [DOI] [PubMed] [Google Scholar]
- Koshy K. M., Boggs J. M. Partial synthesis and physical properties of cerebroside sulfate containing palmitic acid or alpha-hydroxy palmitic acid. Chem Phys Lipids. 1983 Dec;34(1):41–53. doi: 10.1016/0009-3084(83)90058-0. [DOI] [PubMed] [Google Scholar]
- Koshy K. M., Wang J., Boggs J. M. Divalent cation-mediated interaction between cerebroside sulfate and cerebrosides: an investigation of the effect of structural variations of lipids by electrospray ionization mass spectrometry. Biophys J. 1999 Jul;77(1):306–318. doi: 10.1016/S0006-3495(99)76891-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni V. S., Anderson W. H., Brown R. E. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects. Biophys J. 1995 Nov;69(5):1976–1986. doi: 10.1016/S0006-3495(95)80068-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni V. S., Boggs J. M., Brown R. E. Modulation of nanotube formation by structural modifications of sphingolipids. Biophys J. 1999 Jul;77(1):319–330. doi: 10.1016/S0006-3495(99)76892-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee D. C., Miller I. R., Chapman D. An infrared spectroscopic study of metastable and stable forms of hydrated cerebroside bilayers. Biochim Biophys Acta. 1986 Jul 24;859(2):266–270. doi: 10.1016/0005-2736(86)90222-1. [DOI] [PubMed] [Google Scholar]
- Melchior V., Hollingshead C. J., Caspar D. L. Divalent cations cooperatively stabilize close membrane contacts in myelin. Biochim Biophys Acta. 1979 Jun 13;554(1):204–226. doi: 10.1016/0005-2736(79)90019-1. [DOI] [PubMed] [Google Scholar]
- Menikh A., Fragata M. Fourier transform infrared spectroscopic study of ion binding and intramolecular interactions in the polar head of digalactosyldiacylglycerol. Eur Biophys J. 1993;22(4):249–258. doi: 10.1007/BF00180259. [DOI] [PubMed] [Google Scholar]
- Menikh A., Nyholm P. G., Boggs J. M. Characterization of the interaction of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling. Biochemistry. 1997 Mar 25;36(12):3438–3447. doi: 10.1021/bi961869q. [DOI] [PubMed] [Google Scholar]
- Misevic G. N., Burger M. M. Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J Biol Chem. 1993 Mar 5;268(7):4922–4929. [PubMed] [Google Scholar]
- Spillmann D. Carbohydrates in cellular recognition: from leucine-zipper to sugar-zipper? Glycoconj J. 1994 Jun;11(3):169–171. doi: 10.1007/BF00731214. [DOI] [PubMed] [Google Scholar]
- Stewart R. J., Boggs J. M. A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition. Biochemistry. 1993 Oct 12;32(40):10666–10674. doi: 10.1021/bi00091a017. [DOI] [PubMed] [Google Scholar]
- Stewart R. J., Boggs J. M. Dependence of the surface expression of the glycolipid cerebroside sulfate on its lipid environment: comparison of sphingomyelin and phosphatidylcholine. Biochemistry. 1990 Apr 17;29(15):3644–3653. doi: 10.1021/bi00467a009. [DOI] [PubMed] [Google Scholar]
