Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):918–926. doi: 10.1016/S0006-3495(00)76649-5

Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

I Shirakawa 1, S Chaen 1, C R Bagshaw 1, H Sugi 1
PMCID: PMC1300694  PMID: 10653804

Abstract

The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

Full Text

The Full Text of this article is available as a PDF (413.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anazawa T., Yasuda K., Ishiwata S. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis. Biophys J. 1992 May;61(5):1099–1108. doi: 10.1016/S0006-3495(92)81919-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barman T., Brune M., Lionne C., Piroddi N., Poggesi C., Stehle R., Tesi C., Travers F., Webb M. R. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi. Biophys J. 1998 Jun;74(6):3120–3130. doi: 10.1016/S0006-3495(98)78018-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaen S., Shirakawa I., Bagshaw C. R., Sugi H. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy. Biophys J. 1997 Oct;73(4):2033–2042. doi: 10.1016/S0006-3495(97)78233-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  5. Conibear P. B., Bagshaw C. R. Measurement of nucleotide exchange kinetics with isolated synthetic myosin filaments using flash photolysis. FEBS Lett. 1996 Feb 12;380(1-2):13–16. doi: 10.1016/0014-5793(95)01538-8. [DOI] [PubMed] [Google Scholar]
  6. Conibear P. B., Jeffreys D. S., Seehra C. K., Eaton R. J., Bagshaw C. R. Kinetic and spectroscopic characterization of fluorescent ribose-modified ATP analogs upon interaction with skeletal muscle myosin subfragment 1. Biochemistry. 1996 Feb 20;35(7):2299–2308. doi: 10.1021/bi951824+. [DOI] [PubMed] [Google Scholar]
  7. Curtin N. A., Davies R. E. Very high tension with very little ATP breakdown by active skeletal muscle. J Mechanochem Cell Motil. 1975;3(2):147–154. [PubMed] [Google Scholar]
  8. Dantzig J. A., Hibberd M. G., Trentham D. R., Goldman Y. E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol. 1991 Jan;432:639–680. doi: 10.1113/jphysiol.1991.sp018405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fenn W. O. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol. 1923 Dec 28;58(2-3):175–203. doi: 10.1113/jphysiol.1923.sp002115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fenn W. O. The relation between the work performed and the energy liberated in muscular contraction. J Physiol. 1924 May 23;58(6):373–395. doi: 10.1113/jphysiol.1924.sp002141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  12. Homsher E., Lacktis J., Regnier M. Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers. Biophys J. 1997 Apr;72(4):1780–1791. doi: 10.1016/S0006-3495(97)78824-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horiuti K., Yagi N., Takemori S. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges. J Physiol. 1997 Jul 15;502(Pt 2):433–447. doi: 10.1111/j.1469-7793.1997.433bk.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houadjeto M., Travers F., Barman T. Ca(2+)-activated myofibrillar ATPase: transient kinetics and the titration of its active sites. Biochemistry. 1992 Feb 11;31(5):1564–1569. doi: 10.1021/bi00120a038. [DOI] [PubMed] [Google Scholar]
  15. Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
  16. Kawai M., Schachat F. H. Differences in the transient response of fast and slow skeletal muscle fibers. Correlations between complex modulus and myosin light chains. Biophys J. 1984 Jun;45(6):1145–1151. doi: 10.1016/S0006-3495(84)84262-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kushmerick M. J., Davies R. E. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Appendix. Free energy and enthalpy of atp hydrolysis in the sarcoplasm. Proc R Soc Lond B Biol Sci. 1969 Dec 23;174(1036):315–353. doi: 10.1098/rspb.1969.0096. [DOI] [PubMed] [Google Scholar]
  18. Lionne C., Brune M., Webb M. R., Travers F., Barman T. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases. FEBS Lett. 1995 May 1;364(1):59–62. doi: 10.1016/0014-5793(95)00356-e. [DOI] [PubMed] [Google Scholar]
  19. Millar N. C., Homsher E. Kinetics of force generation and phosphate release in skinned rabbit soleus muscle fibers. Am J Physiol. 1992 May;262(5 Pt 1):C1239–C1245. doi: 10.1152/ajpcell.1992.262.5.C1239. [DOI] [PubMed] [Google Scholar]
  20. Moss R. L. The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit. J Muscle Res Cell Motil. 1982 Sep;3(3):295–311. doi: 10.1007/BF00713039. [DOI] [PubMed] [Google Scholar]
  21. Poole K. J., Rapp G., Maéda Y., Goody R. S. The time course of changes in the equatorial diffraction patterns from different muscle types on photolysis of caged-ATP. Adv Exp Med Biol. 1988;226:391–404. [PubMed] [Google Scholar]
  22. Potma E. J., van Graas I. A., Stienen G. J. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit. Biophys J. 1994 Dec;67(6):2404–2410. doi: 10.1016/S0006-3495(94)80727-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimada T., Sasaki N., Ohkura R., Sutoh K. Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II. Biochemistry. 1997 Nov 18;36(46):14037–14043. doi: 10.1021/bi971837i. [DOI] [PubMed] [Google Scholar]
  24. Sleep J. A. Single turnovers of adenosine 5'-triphosphate by myofibrils and actomyosin subfragment 1. Biochemistry. 1981 Aug 18;20(17):5043–5051. doi: 10.1021/bi00520a034. [DOI] [PubMed] [Google Scholar]
  25. Sleep J., Herrmann C., Barman T., Travers F. Inhibition of ATP binding to myofibrils and acto-myosin subfragment 1 by caged ATP. Biochemistry. 1994 May 24;33(20):6038–6042. doi: 10.1021/bi00186a002. [DOI] [PubMed] [Google Scholar]
  26. Thirlwell H., Sleep J. A., Ferenczi M. A. Inhibition of unloaded shortening velocity in permeabilized muscle fibres by caged ATP compounds. J Muscle Res Cell Motil. 1995 Apr;16(2):131–137. doi: 10.1007/BF00122531. [DOI] [PubMed] [Google Scholar]
  27. Wang G., Kawai M. Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers. Biophys J. 1996 Sep;71(3):1450–1461. doi: 10.1016/S0006-3495(96)79346-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang G., Kawai M. Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers. Biophys J. 1997 Aug;73(2):878–894. doi: 10.1016/S0006-3495(97)78121-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhao Y., Kawai M. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J. 1994 Oct;67(4):1655–1668. doi: 10.1016/S0006-3495(94)80638-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES