Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):950–958. doi: 10.1016/S0006-3495(00)76652-5

Cryoatomic force microscopy of filamentous actin.

Z Shao 1, D Shi 1, A V Somlyo 1
PMCID: PMC1300697  PMID: 10653807

Abstract

Cryoatomic force microscopy (cryo-AFM) was used to image phalloidin-stabilized actin filaments adsorbed to mica. The single filaments are clearly shown to be right-handed helical structures with a periodicity of approximately 38 nm. Even at a moderate concentration ( approximately 10 microg/ml), narrow, branched rafts of actin filaments and larger aggregates have been observed. The resolution achieved is sufficient to resolve actin monomers within the filaments. A closer examination of the images shows that the branched rafts are composed of up to three individual filaments with a highly regular lateral registration with a fixed axial shift of approximately 13 nm. The implications of these higher-order structures are discussed in terms of x-ray fiber diffraction and rheology of actin gels. The cryo-AFM images also indicate that the recently proposed model of left-handed F-actin is likely to be an artifact of preparation and/or low-resolution AFM imaging.

Full Text

The Full Text of this article is available as a PDF (440.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi U., Fowler W. E., Isenberg G., Pollard T. D., Smith P. R. Crystalline actin sheets: their structure and polymorphism. J Cell Biol. 1981 Nov;91(2 Pt 1):340–351. doi: 10.1083/jcb.91.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bremer A., Henn C., Goldie K. N., Engel A., Smith P. R., Aebi U. Towards atomic interpretation of F-actin filament three-dimensional reconstructions. J Mol Biol. 1994 Oct 7;242(5):683–700. doi: 10.1006/jmbi.1994.1617. [DOI] [PubMed] [Google Scholar]
  3. Bremer A., Millonig R. C., Sütterlin R., Engel A., Pollard T. D., Aebi U. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model. J Cell Biol. 1991 Nov;115(3):689–703. doi: 10.1083/jcb.115.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byers H. R., Fujiwara K. Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha-actinin. J Cell Biol. 1982 Jun;93(3):804–811. doi: 10.1083/jcb.93.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coluccio L. M., Bretscher A. Reassociation of microvillar core proteins: making a microvillar core in vitro. J Cell Biol. 1989 Feb;108(2):495–502. doi: 10.1083/jcb.108.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cortese J. D., Frieden C. Microheterogeneity of actin gels formed under controlled linear shear. J Cell Biol. 1988 Oct;107(4):1477–1487. doi: 10.1083/jcb.107.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egelman E. H., DeRosier D. J. Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys J. 1992 Nov;63(5):1299–1305. doi: 10.1016/S0006-3495(92)81716-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egelman E. H., Orlova A. New insights into actin filament dynamics. Curr Opin Struct Biol. 1995 Apr;5(2):172–180. doi: 10.1016/0959-440x(95)80072-7. [DOI] [PubMed] [Google Scholar]
  9. Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil. 1992 Jun;13(3):272–284. doi: 10.1007/BF01766455. [DOI] [PubMed] [Google Scholar]
  10. Fowler W. E., Aebi U. A consistent picture of the actin filament related to the orientation of the actin molecule. J Cell Biol. 1983 Jul;97(1):264–269. doi: 10.1083/jcb.97.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furukawa R., Fechheimer M. The structure, function, and assembly of actin filament bundles. Int Rev Cytol. 1997;175:29–90. doi: 10.1016/s0074-7696(08)62125-7. [DOI] [PubMed] [Google Scholar]
  12. Han W., Mou J., Sheng J., Yang J., Shao Z. Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry. 1995 Jul 4;34(26):8215–8220. doi: 10.1021/bi00026a001. [DOI] [PubMed] [Google Scholar]
  13. Holmes K. C. A molecular model for muscle contraction. Acta Crystallogr A. 1998 Nov 1;54(Pt 6 1):789–797. doi: 10.1107/s0108767398010307. [DOI] [PubMed] [Google Scholar]
  14. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  15. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  16. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  17. Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
  18. Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
  19. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  20. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kawamura M., Maruyama K. Electron microscopic particle length of F-actin polymerized in vitro. J Biochem. 1970 Mar;67(3):437–457. doi: 10.1093/oxfordjournals.jbchem.a129267. [DOI] [PubMed] [Google Scholar]
  22. Kerst A., Chmielewski C., Livesay C., Buxbaum R. E., Heidemann S. R. Liquid crystal domains and thixotropy of filamentous actin suspensions. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4241–4245. doi: 10.1073/pnas.87.11.4241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Käs J., Strey H., Tang J. X., Finger D., Ezzell R., Sackmann E., Janmey P. A. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J. 1996 Feb;70(2):609–625. doi: 10.1016/S0006-3495(96)79630-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  25. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  26. Milligan R. A., Whittaker M., Safer D. Molecular structure of F-actin and location of surface binding sites. Nature. 1990 Nov 15;348(6298):217–221. doi: 10.1038/348217a0. [DOI] [PubMed] [Google Scholar]
  27. Millonig R., Salvo H., Aebi U. Probing actin polymerization by intermolecular cross-linking. J Cell Biol. 1988 Mar;106(3):785–796. doi: 10.1083/jcb.106.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
  29. Mullins R. D., Heuser J. A., Pollard T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181–6186. doi: 10.1073/pnas.95.11.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. O'Brien E. J., Bennett P. M., Hanson J. Optical diffraction studies of myofibrillar structure. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):201–208. doi: 10.1098/rstb.1971.0051. [DOI] [PubMed] [Google Scholar]
  31. Pollard T. D. Actin. Curr Opin Cell Biol. 1990 Feb;2(1):33–40. doi: 10.1016/s0955-0674(05)80028-6. [DOI] [PubMed] [Google Scholar]
  32. Pollard T. D., Aebi U., Cooper J. A., Fowler W. E., Tseng P. Actin structure, polymerization, and gelation. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):513–524. doi: 10.1101/sqb.1982.046.01.048. [DOI] [PubMed] [Google Scholar]
  33. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  34. Popp D., Lednev V. V., Jahn W. Methods of preparing well-orientated sols of f-actin containing filaments suitable for X-ray diffraction. J Mol Biol. 1987 Oct 20;197(4):679–684. doi: 10.1016/0022-2836(87)90474-8. [DOI] [PubMed] [Google Scholar]
  35. Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
  36. Smith P. R., Fowler W. E., Pollard T. D., Aebi U. Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament. J Mol Biol. 1983 Jul 5;167(3):641–660. doi: 10.1016/s0022-2836(83)80103-x. [DOI] [PubMed] [Google Scholar]
  37. Smith S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988 Nov 4;242(4879):708–715. doi: 10.1126/science.3055292. [DOI] [PubMed] [Google Scholar]
  38. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  39. Steinmetz M. O., Hoenger A., Tittmann P., Fuchs K. H., Gross H., Aebi U. An atomic model of crystalline actin tubes: combining electron microscopy with X-ray crystallography. J Mol Biol. 1998 May 15;278(4):703–711. doi: 10.1006/jmbi.1998.1717. [DOI] [PubMed] [Google Scholar]
  40. Steinmetz M. O., Stoffler D., Hoenger A., Bremer A., Aebi U. Actin: from cell biology to atomic detail. J Struct Biol. 1997 Aug;119(3):295–320. doi: 10.1006/jsbi.1997.3873. [DOI] [PubMed] [Google Scholar]
  41. Sukow C., DeRosier D. How to analyze electron micrographs of rafts of actin filaments crosslinked by actin-binding proteins. J Mol Biol. 1998 Dec 11;284(4):1039–1050. doi: 10.1006/jmbi.1998.2211. [DOI] [PubMed] [Google Scholar]
  42. Suzuki A., Yamazaki M., Ito T. Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry. 1989 Jul 25;28(15):6513–6518. doi: 10.1021/bi00441a052. [DOI] [PubMed] [Google Scholar]
  43. Taylor K. A., Taylor D. W. Formation of 2-D paracrystals of F-actin on phospholipid layers mixed with quaternary ammonium surfactants. J Struct Biol. 1992 Mar-Apr;108(2):140–147. doi: 10.1016/1047-8477(92)90013-z. [DOI] [PubMed] [Google Scholar]
  44. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  45. Ward R. J., Menetret J. F., Pattus F., Leonard K. Method for forming two-dimensional paracrystals of biological filaments on lipid monolayers. J Electron Microsc Tech. 1990 Apr;14(4):335–341. doi: 10.1002/jemt.1060140408. [DOI] [PubMed] [Google Scholar]
  46. Zaner K. S. Physics of actin networks. I. Rheology of semi-dilute F-actin. Biophys J. 1995 Mar;68(3):1019–1026. doi: 10.1016/S0006-3495(95)80277-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zaner K. S., Valberg P. A. Viscoelasticity of F-actin measured with magnetic microparticles. J Cell Biol. 1989 Nov;109(5):2233–2243. doi: 10.1083/jcb.109.5.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES