Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):959–966. doi: 10.1016/S0006-3495(00)76653-7

Charge motions during the photocycle of pharaonis halorhodopsin.

K Ludmann 1, G Ibron 1, J K Lanyi 1, G Váró 1
PMCID: PMC1300698  PMID: 10653808

Abstract

Oriented gel samples were prepared from halorhodopsin-containing membranes from Natronobacterium pharaonis, and their photoelectric responses to laser flash excitation were measured at different chloride concentrations. The fast component of the current signal displayed a characteristic dependency on chloride concentration, and could be interpreted as a sum of two signals that correspond to the responses at high-chloride and no-chloride, but high-sulfate, concentration. The chloride concentration-dependent transition between the two signals followed the titration curve determined earlier from spectroscopic titration. The voltage signal was very similar to that reported by another group (Kalaidzidis, I. V., Y. L. Kalaidzidis, and A. D. Kaulen. 1998. FEBS Lett. 427:59-63). The absorption kinetics, measured at four wavelengths, fit the kinetic model we had proposed earlier. The calculated time-dependent concentrations of the intermediates were used to fit the voltage signal. Although no negative electric signal was observed at high chloride concentration, the calculated electrogenicity of the K intermediate was negative, and very similar to that of bacteriorhodopsin. The late photocycle intermediates (O, HR', and HR) had almost equal electrogenicities, explaining why no chloride-dependent time constant was identified earlier by Kalaidzidis et al. The calculated electrogenicities, and the spectroscopic information for the chloride release and uptake steps of the photocycle, suggest a mechanism for the chloride-translocation process in this pump.

Full Text

The Full Text of this article is available as a PDF (130.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bamberg E., Dencher N. A., Fahr A., Heyn M. P. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7502–7506. doi: 10.1073/pnas.78.12.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bivin D. B., Stoeckenius W. Photoactive retinal pigments in haloalkaliphilic bacteria. J Gen Microbiol. 1986 Aug;132(8):2167–2177. doi: 10.1099/00221287-132-8-2167. [DOI] [PubMed] [Google Scholar]
  4. Blanck A., Oesterhelt D. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 1987 Jan;6(1):265–273. doi: 10.1002/j.1460-2075.1987.tb04749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braiman M. S., Walter T. J., Briercheck D. M. Infrared spectroscopic detection of light-induced change in chloride-arginine interaction in halorhodopsin. Biochemistry. 1994 Feb 22;33(7):1629–1635. doi: 10.1021/bi00173a003. [DOI] [PubMed] [Google Scholar]
  6. Butt H. J., Fendler K., Bamberg E., Tittor J., Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. doi: 10.1002/j.1460-2075.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drachev L. A., Kaulen A. D., Khitrina L. V., Skulachev V. P. Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin. Eur J Biochem. 1981 Jul;117(3):461–470. doi: 10.1111/j.1432-1033.1981.tb06361.x. [DOI] [PubMed] [Google Scholar]
  8. Dér A., Hargittai P., Simon J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. J Biochem Biophys Methods. 1985 Mar;10(5-6):295–300. doi: 10.1016/0165-022x(85)90063-6. [DOI] [PubMed] [Google Scholar]
  9. Gergely C., Ganea C., Groma G., Váró G. Study of the photocycle and charge motions of the bacteriorhodopsin mutant D96N. Biophys J. 1993 Dec;65(6):2478–2483. doi: 10.1016/S0006-3495(93)81308-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerscher S., Mylrajan M., Hildebrandt P., Baron M. H., Müller R., Engelhard M. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy. Biochemistry. 1997 Sep 9;36(36):11012–11020. doi: 10.1021/bi970722b. [DOI] [PubMed] [Google Scholar]
  11. Havelka W. A., Henderson R., Oesterhelt D. Three-dimensional structure of halorhodopsin at 7 A resolution. J Mol Biol. 1995 Apr 7;247(4):726–738. doi: 10.1006/jmbi.1995.0176. [DOI] [PubMed] [Google Scholar]
  12. Holz M., Lindau M., Heyn M. P. Distributed kinetics of the charge movements in bacteriorhodopsin: evidence for conformational substates. Biophys J. 1988 Apr;53(4):623–633. doi: 10.1016/S0006-3495(88)83141-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ihara K., Umemura T., Katagiri I., Kitajima-Ihara T., Sugiyama Y., Kimura Y., Mukohata Y. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol. 1999 Jan 8;285(1):163–174. doi: 10.1006/jmbi.1998.2286. [DOI] [PubMed] [Google Scholar]
  14. Kalaidzidis I. V., Kalaidzidis Y. L., Kaulen A. D. Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett. 1998 May 1;427(1):59–63. doi: 10.1016/s0014-5793(98)00394-9. [DOI] [PubMed] [Google Scholar]
  15. Lanyi J. K., Duschl A., Hatfield G. W., May K., Oesterhelt D. The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem. 1990 Jan 25;265(3):1253–1260. [PubMed] [Google Scholar]
  16. Lanyi J. K., Duschl A., Váro G., Zimányi L. Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism. FEBS Lett. 1990 Jun 4;265(1-2):1–6. doi: 10.1016/0014-5793(90)80869-k. [DOI] [PubMed] [Google Scholar]
  17. Lanyi J. K. Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol Rev. 1990 Apr;70(2):319–330. doi: 10.1152/physrev.1990.70.2.319. [DOI] [PubMed] [Google Scholar]
  18. Lanyi J. K. Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem. 1986;15:11–28. doi: 10.1146/annurev.bb.15.060186.000303. [DOI] [PubMed] [Google Scholar]
  19. Ludmann K., Gergely C., Dér A., Váró G. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Biophys J. 1998 Dec;75(6):3120–3126. doi: 10.1016/S0006-3495(98)77753-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ludmann K., Gergely C., Váró G. Kinetic and thermodynamic study of the bacteriorhodopsin photocycle over a wide pH range. Biophys J. 1998 Dec;75(6):3110–3119. doi: 10.1016/S0006-3495(98)77752-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matsuno-Yagi A., Mukohata Y. ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys. 1980 Jan;199(1):297–303. doi: 10.1016/0003-9861(80)90284-2. [DOI] [PubMed] [Google Scholar]
  22. Muneyuki E., Shibazaki C., Ohtani H., Okuno D., Asaumi M., Mogi T. Time-resolved measurements of photovoltage generation by bacteriorhodopsin and halorhodopsin adsorbed on a thin polymer film. J Biochem. 1999 Feb;125(2):270–276. doi: 10.1093/oxfordjournals.jbchem.a022283. [DOI] [PubMed] [Google Scholar]
  23. Oesterhelt D., Tittor J. Two pumps, one principle: light-driven ion transport in halobacteria. Trends Biochem Sci. 1989 Feb;14(2):57–61. doi: 10.1016/0968-0004(89)90044-3. [DOI] [PubMed] [Google Scholar]
  24. Okuno D., Asaumi M., Muneyuki E. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry. 1999 Apr 27;38(17):5422–5429. doi: 10.1021/bi9826456. [DOI] [PubMed] [Google Scholar]
  25. Otomo J., Tomioka H., Sasabe H. Properties and the primary structure of a new halorhodopsin from halobacterial strain mex. Biochim Biophys Acta. 1992 Nov 23;1112(1):7–13. doi: 10.1016/0005-2736(92)90246-i. [DOI] [PubMed] [Google Scholar]
  26. Rüdiger M., Oesterhelt D. Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J. 1997 Jul 1;16(13):3813–3821. doi: 10.1093/emboj/16.13.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scharf B., Engelhard M. Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry. 1994 May 31;33(21):6387–6393. doi: 10.1021/bi00187a002. [DOI] [PubMed] [Google Scholar]
  28. Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
  29. Soppa J., Duschl J., Oesterhelt D. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family. J Bacteriol. 1993 May;175(9):2720–2726. doi: 10.1128/jb.175.9.2720-2726.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trissl H. W. Photoelectric measurements of purple membranes. Photochem Photobiol. 1990 Jun;51(6):793–818. [PubMed] [Google Scholar]
  31. Váró G., Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry. 1995 Nov 7;34(44):14490–14499. doi: 10.1021/bi00044a027. [DOI] [PubMed] [Google Scholar]
  32. Váró G., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry. 1995 Nov 7;34(44):14500–14507. doi: 10.1021/bi00044a028. [DOI] [PubMed] [Google Scholar]
  33. Váró G., Zimányi L., Fan X., Sun L., Needleman R., Lanyi J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J. 1995 May;68(5):2062–2072. doi: 10.1016/S0006-3495(95)80385-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zimányi L., Lanyi J. K. Deriving the intermediate spectra and photocycle kinetics from time-resolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein. Biophys J. 1993 Jan;64(1):240–251. doi: 10.1016/S0006-3495(93)81360-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES