Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):977–981. doi: 10.1016/s0006-3495(00)76655-0

Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin.

J G Grossmann 1, S A Ali 1, A Abbasi 1, Z H Zaidi 1, S Stoeva 1, W Voelter 1, S S Hasnain 1
PMCID: PMC1300700  PMID: 10653810

Abstract

Synchrotron x-ray scattering measurements were performed on dilute solutions of the purified hemocyanin subunit (Bsin1) from scorpion (Buthus sindicus) and the N-terminal functional unit (Rta) from a marine snail (Rapana thomasiana). The model-independent approach based on spherical harmonics was applied to calculate the molecular envelopes directly from the scattering profiles. Their molecular shapes in solution could be restored at 2-nm resolution. We show that these units represent stable, globular building blocks of the two hemocyanin families and emphasize their conformational differences on a subunit level. Because no crystallographic or electron microscopy data are available for isolated functional units, this study provides for the first time structural information for isolated, monomeric functional subunits from both hemocyanin families. This has been made possible through the use of low protein concentrations (< or = 1 mg/ml). The observed structural differences may offer advantages in building very different overall molecular architectures of hemocyanin by the two phyla.

Full Text

The Full Text of this article is available as a PDF (203.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. A., Zaidi Z. H., Abbasi A. Oxygen transport proteins: I. Structure and organization of hemocyanin from scorpion (Buthus sindicus). Comp Biochem Physiol A Physiol. 1995 Sep;112(1):225–232. doi: 10.1016/0300-9629(95)00058-f. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Cuff M. E., Miller K. I., van Holde K. E., Hendrickson W. A. Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol. 1998 May 15;278(4):855–870. doi: 10.1006/jmbi.1998.1647. [DOI] [PubMed] [Google Scholar]
  4. Decker H., Hartmann H., Sterner R., Schwarz E., Pilz I. Small-angle X-ray scattering reveals differences between the quaternary structures of oxygenated and deoxygenated tarantula hemocyanin. FEBS Lett. 1996 Sep 16;393(2-3):226–230. doi: 10.1016/0014-5793(96)00887-3. [DOI] [PubMed] [Google Scholar]
  5. Grossmann J. G., Crawley J. B., Strange R. W., Patel K. J., Murphy L. M., Neu M., Evans R. W., Hasnain S. S. The nature of ligand-induced conformational change in transferrin in solution. An investigation using X-ray scattering, XAFS and site-directed mutants. J Mol Biol. 1998 Jun 5;279(2):461–472. doi: 10.1006/jmbi.1998.1787. [DOI] [PubMed] [Google Scholar]
  6. Hazes B., Magnus K. A., Bonaventura C., Bonaventura J., Dauter Z., Kalk K. H., Hol W. G. Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: clues for a mechanism for allosteric regulation. Protein Sci. 1993 Apr;2(4):597–619. doi: 10.1002/pro.5560020411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Idakieva K., Severov S., Svendsen I., Genov N., Stoeva S., Beltramini M., Tognon G., Di Muro P., Salvato B. Structural properties of Rapana thomasiana grosse hemocyanin: isolation, characterization and N-terminal amino acid sequence of two different dissociation products. Comp Biochem Physiol B. 1993 Sep;106(1):53–59. doi: 10.1016/0305-0491(93)90006-q. [DOI] [PubMed] [Google Scholar]
  8. Idakieva K., Stoeva S., Voelter W., Genov N. Functional unit of the Rapana thomasiana (Grosse) (marine snail, gastropod) hemocyanin. Comp Biochem Physiol B Biochem Mol Biol. 1995 Dec;112(4):599–606. doi: 10.1016/0305-0491(95)00102-6. [DOI] [PubMed] [Google Scholar]
  9. Lamy J., Bijlholt M. C., Sizaret P. Y., Lamy J., van Bruggen E. F. Quaternary structure of scorpion (Androctonus australis) hemocyanin. Localization of subunits with immunological methods and electron microscopy. Biochemistry. 1981 Mar 31;20(7):1849–1856. doi: 10.1021/bi00510a021. [DOI] [PubMed] [Google Scholar]
  10. Lamy J., Gielens C., Lambert O., Taveau J. C., Motta G., Loncke P., De Geest N., Préaux G., Lamy J. Further approaches to the quaternary structure of octopus hemocyanin: a model based on immunoelectron microscopy and image processing. Arch Biochem Biophys. 1993 Aug 15;305(1):17–29. doi: 10.1006/abbi.1993.1388. [DOI] [PubMed] [Google Scholar]
  11. Lamy J., Lamy J., Bonaventura J., Bonaventura C. Structure, function, and assembly in the hemocyanin system of the scorpion, Androctonus australis. Biochemistry. 1980 Jun 24;19(13):3033–3039. doi: 10.1021/bi00554a031. [DOI] [PubMed] [Google Scholar]
  12. Lang W. H. cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain. Biochemistry. 1988 Sep 20;27(19):7276–7282. doi: 10.1021/bi00419a015. [DOI] [PubMed] [Google Scholar]
  13. Lang W. H., van Holde K. E. Cloning and sequencing of Octopus dofleini hemocyanin cDNA: derived sequences of functional units Ode and Odf. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):244–248. doi: 10.1073/pnas.88.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magnus K. A., Hazes B., Ton-That H., Bonaventura C., Bonaventura J., Hol W. G. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins. 1994 Aug;19(4):302–309. doi: 10.1002/prot.340190405. [DOI] [PubMed] [Google Scholar]
  15. Miller K. I., Cuff M. E., Lang W. F., Varga-Weisz P., Field K. G., van Holde K. E. Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. J Mol Biol. 1998 May 15;278(4):827–842. doi: 10.1006/jmbi.1998.1648. [DOI] [PubMed] [Google Scholar]
  16. Miller K. I., Schabtach E., van Holde K. E. Arrangement of subunits and domains within the Octopus dofleini hemocyanin molecule. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1496–1500. doi: 10.1073/pnas.87.4.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stoeva S., Idakieva K., Genov N., Voelter W. Complete amino acid sequence of dioxygen-binding functional unit of the Rapana thomasiana hemocyanin. Biochem Biophys Res Commun. 1997 Sep 18;238(2):403–410. doi: 10.1006/bbrc.1997.7314. [DOI] [PubMed] [Google Scholar]
  18. Volbeda A., Hol W. G. Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. J Mol Biol. 1989 Sep 20;209(2):249–279. doi: 10.1016/0022-2836(89)90276-3. [DOI] [PubMed] [Google Scholar]
  19. van Holde K. E., Miller K. I. Hemocyanins. Adv Protein Chem. 1995;47:1–81. doi: 10.1016/s0065-3233(08)60545-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES