Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):1010–1017. doi: 10.1016/S0006-3495(00)76659-8

Solvent effects on the conformation of the transmembrane peptide gramicidin A: insights from electrospray ionization mass spectrometry.

M Bouchard 1, D R Benjamin 1, P Tito 1, C V Robinson 1, C M Dobson 1
PMCID: PMC1300704  PMID: 10653814

Abstract

The binding of sodium ions to the transmembrane channel peptide gramicidin A has permitted the use of electrospray ionization mass spectrometry to study its conformation in different solvent environments. The mass spectra of the peptide in the various solvents suggest that different conformations of gramicidin A differ in their ability to bind metal ions. The data are consistent with monomeric behavior of gramicidin A in trifluoroethanol and dimethyl sulfoxide solutions, but reveal the presence of noncovalent intermolecular interactions in ethanol solution through the observation of heterodimers formed between the naturally occurring variants of the peptide. The addition of 50% v/v of water to the ethanolic solution causes changes in the circular dichroism spectrum of the peptide, suggestive of a shift in the equilibrium mixture of conformers present toward monomeric species, a result supported by its mass spectrum. The structure of gramicidin A in trifluoroethanol has also been investigated by hydrogen exchange measurements monitored by mass spectrometry. The observation of significant protection against exchange suggests that the monomeric peptide is highly structured in trifluoroethanol. The results indicate that mass spectrometry has the potential to probe the conformational behavior of neutral hydrophobic peptides in environments that mimic their functional states.

Full Text

The Full Text of this article is available as a PDF (83.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolin K. A., Pitkeathly M., Miranker A., Smith L. J., Dobson C. M. Insight into a random coil conformation and an isolated helix: structural and dynamical characterisation of the C-helix peptide from hen lysozyme. J Mol Biol. 1996 Aug 23;261(3):443–453. doi: 10.1006/jmbi.1996.0475. [DOI] [PubMed] [Google Scholar]
  4. Bouchard M., Auger M. Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study. Biophys J. 1993 Dec;65(6):2484–2492. doi: 10.1016/S0006-3495(93)81300-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouchard M., Davis J. H., Auger M. High-speed magic angle spinning solid-state 1H nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers. Biophys J. 1995 Nov;69(5):1933–1938. doi: 10.1016/S0006-3495(95)80063-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buck M., Radford S. E., Dobson C. M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993 Jan 19;32(2):669–678. doi: 10.1021/bi00053a036. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Wallace B. A. Solvent effects on the conformation and far UV CD spectra of gramicidin. Biopolymers. 1997 Dec;42(7):771–781. doi: 10.1002/(sici)1097-0282(199712)42:7<771::aid-bip3>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  8. Chung E. W., Nettleton E. J., Morgan C. J., Gross M., Miranker A., Radford S. E., Dobson C. M., Robinson C. V. Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997 Jun;6(6):1316–1324. doi: 10.1002/pro.5560060620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engen J. R., Smithgall T. E., Gmeiner W. H., Smith D. L. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation. J Mol Biol. 1999 Apr 2;287(3):645–656. doi: 10.1006/jmbi.1999.2619. [DOI] [PubMed] [Google Scholar]
  10. Engen J. R., Smithgall T. E., Gmeiner W. H., Smith D. L. Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry. 1997 Nov 25;36(47):14384–14391. doi: 10.1021/bi971635m. [DOI] [PubMed] [Google Scholar]
  11. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  12. Fossel E. T., Veatch W. R., Ovchinnikov U. A., Blout E. R. A 13C nuclear magnetic resonance study of gramicidin A in monomer and dimer forms. Biochemistry. 1974 Dec 17;13(26):5264–5275. doi: 10.1021/bi00723a003. [DOI] [PubMed] [Google Scholar]
  13. Hawkes G. E., Lian L. Y., Randall E. W., Sales K. D., Curzon E. H. The conformation of gramicidin A in dimethylsulphoxide solution. A full analysis of the one- and two-dimensional 1H, 13C, and 15N nuclear-magnetic-resonance spectra. Eur J Biochem. 1987 Jul 15;166(2):437–445. doi: 10.1111/j.1432-1033.1987.tb13535.x. [DOI] [PubMed] [Google Scholar]
  14. Heitz F., Heitz A., Trudelle Y. Conformations of gramicidin A and its 9,11,13,15-phenylalanyl analog in dimethyl sulfoxide and chloroform. Biophys Chem. 1986 Jul;24(2):149–160. doi: 10.1016/0301-4622(86)80008-4. [DOI] [PubMed] [Google Scholar]
  15. Iqbal Z., Weidekamm E. Raman and infrared spectroscopic study of gramicidin A conformations. Arch Biochem Biophys. 1980 Jul;202(2):639–649. doi: 10.1016/0003-9861(80)90472-5. [DOI] [PubMed] [Google Scholar]
  16. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  17. Killian J. A., Prasad K. U., Hains D., Urry D. W. The membrane as an environment of minimal interconversion. A circular dichroism study on the solvent dependence of the conformational behavior of gramicidin in diacylphosphatidylcholine model membranes. Biochemistry. 1988 Jun 28;27(13):4848–4855. doi: 10.1021/bi00413a040. [DOI] [PubMed] [Google Scholar]
  18. Lomize A. L., Orekhov V. Iu, Arsen'ev A. S. Utochnenie prostranstvennoi struktury ionnogo kanala gramitsidina A. Bioorg Khim. 1992 Feb;18(2):182–200. [PubMed] [Google Scholar]
  19. Loo J. A., Loo R. R., Udseth H. R., Edmonds C. G., Smith R. D. Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom. 1991 Mar;5(3):101–105. doi: 10.1002/rcm.1290050303. [DOI] [PubMed] [Google Scholar]
  20. Maier C. S., Kim O. H., Deinzer M. L. Conformational properties of the A-state of cytochrome c studied by hydrogen/deuterium exchange and electrospray mass spectrometry. Anal Biochem. 1997 Oct 1;252(1):127–135. doi: 10.1006/abio.1997.2290. [DOI] [PubMed] [Google Scholar]
  21. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., Dobson C. M. Detection of transient protein folding populations by mass spectrometry. Science. 1993 Nov 5;262(5135):896–900. doi: 10.1126/science.8235611. [DOI] [PubMed] [Google Scholar]
  22. Miranker A., Robinson C. V., Radford S. E., Dobson C. M. Investigation of protein folding by mass spectrometry. FASEB J. 1996 Jan;10(1):93–101. doi: 10.1096/fasebj.10.1.8566553. [DOI] [PubMed] [Google Scholar]
  23. Nicholson L. K., Cross T. A. Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. Biochemistry. 1989 Nov 28;28(24):9379–9385. doi: 10.1021/bi00450a019. [DOI] [PubMed] [Google Scholar]
  24. Pascal S. M., Cross T. A. Structure of an isolated gramicidin A double helical species by high-resolution nuclear magnetic resonance. J Mol Biol. 1992 Aug 20;226(4):1101–1109. doi: 10.1016/0022-2836(92)91055-t. [DOI] [PubMed] [Google Scholar]
  25. Prosser R. S., Davis J. H., Dahlquist F. W., Lindorfer M. A. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry. 1991 May 14;30(19):4687–4696. doi: 10.1021/bi00233a008. [DOI] [PubMed] [Google Scholar]
  26. Rostom A. A., Robinson C. V. Disassembly of intact multiprotein complexes in the gas phase. Curr Opin Struct Biol. 1999 Feb;9(1):135–141. doi: 10.1016/s0959-440x(99)80018-9. [DOI] [PubMed] [Google Scholar]
  27. Urry D. W., Glickson J. D., Mayers D. F., Haider J. Spectroscopic studies on the conformation of gramicidin A'. Evidence for a new helical conformation. Biochemistry. 1972 Feb 15;11(4):487–493. doi: 10.1021/bi00754a002. [DOI] [PubMed] [Google Scholar]
  28. Veatch W. R., Blout E. R. The aggregation of gramicidin A in solution. Biochemistry. 1974 Dec 17;13(26):5257–5264. doi: 10.1021/bi00723a002. [DOI] [PubMed] [Google Scholar]
  29. Veatch W. R., Fossel E. T., Blout E. R. The conformation of gramicidin A. Biochemistry. 1974 Dec 17;13(26):5249–5256. doi: 10.1021/bi00723a001. [DOI] [PubMed] [Google Scholar]
  30. Vis H., Dobson C. M., Robinson C. V. Selective association of protein molecules followed by mass spectrometry. Protein Sci. 1999 Jun;8(6):1368–1370. doi: 10.1110/ps.8.6.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wagner D. S., Anderegg R. J. Conformation of cytochrome c studied by deuterium exchange-electrospray ionization mass spectrometry. Anal Chem. 1994 Mar 1;66(5):706–711. doi: 10.1021/ac00077a020. [DOI] [PubMed] [Google Scholar]
  32. Wang F., Tang X. Conformational heterogeneity of stability of apomyoglobin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry. Biochemistry. 1996 Apr 2;35(13):4069–4078. doi: 10.1021/bi9521304. [DOI] [PubMed] [Google Scholar]
  33. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Biochemistry. 1992 Nov 24;31(46):11579–11588. doi: 10.1021/bi00161a042. [DOI] [PubMed] [Google Scholar]
  35. Zhang Z., Smith D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993 Apr;2(4):522–531. doi: 10.1002/pro.5560020404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES