Abstract
Electron paramagnetic resonance was used to investigate the magnetic material present in abdomens of Pachycondyla marginata ants. A g congruent with 4.3 resonance of high-spin ferric ions and a very narrow g congruent with 2 line are observed. Two principal resonance broad lines, one with g > 4.5 (LF) and the other in the region of g congruent with 2 (HF), were associated with the biomineralization process. The resonance field shift between these two lines, HF and LF, associated with magnetic nanoparticles indicates the presence of cluster structures containing on average three single units of magnetite-based nanoparticles. Analysis of the temperature dependence of the HF resonance linewidths supports the model picture of isolated magnetite nanostructures of approximately 13 nm in diameter with a magnetic energy of 544 K. These particles are shown to present a superparamagnetic behavior at room temperature. The use of these superparamagnetic particle properties for the magnetoreception process of the ants is suggested.
Full Text
The Full Text of this article is available as a PDF (74.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acosta-Avalos D, Wajnberg E, Oliveira PS, Leal I, I, Farina M, Esquivel DM. Isolation of magnetic nanoparticles from pachycondyla marginata ants. J Exp Biol. 1999 Oct;202(Pt 19):2687–2692. doi: 10.1242/jeb.202.19.2687. [DOI] [PubMed] [Google Scholar]
- Bazylinski D. A., Garratt-Reed A. J., Frankel R. B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech. 1994 Apr 1;27(5):389–401. doi: 10.1002/jemt.1070270505. [DOI] [PubMed] [Google Scholar]
- Blakemore R. Magnetotactic bacteria. Science. 1975 Oct 24;190(4212):377–379. doi: 10.1126/science.170679. [DOI] [PubMed] [Google Scholar]
- Dimitrov DA, Wysin GM. Effects of surface anisotropy on hysteresis in fine magnetic particles. Phys Rev B Condens Matter. 1994 Aug 1;50(5):3077–3084. doi: 10.1103/physrevb.50.3077. [DOI] [PubMed] [Google Scholar]
- Kirschvink J. L., Kobayashi-Kirschvink A., Woodford B. J. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683–7687. doi: 10.1073/pnas.89.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kodama RH, Berkowitz AE, McNiff EJ, Jr, Foner S. Surface Spin Disorder in NiFe2O4 Nanoparticles. Phys Rev Lett. 1996 Jul 8;77(2):394–397. doi: 10.1103/PhysRevLett.77.394. [DOI] [PubMed] [Google Scholar]
- Krebs A. T., Benson B. W. Electron spin resonances in Formicidae. Nature. 1965 Sep 25;207(5004):1412–1413. doi: 10.1038/2071412a0. [DOI] [PubMed] [Google Scholar]
- Millev Y, Fähnle M. Types of temperature dependence of single-ion magnetic anisotropy constants by general thermodynamic considerations. Phys Rev B Condens Matter. 1995 Aug 1;52(6):4336–4352. doi: 10.1103/physrevb.52.4336. [DOI] [PubMed] [Google Scholar]
- Schiff H. Modulation of spike frequencies by varying the ambient magnetic field and magnetite candidates in bees (Apis mellifera). Comp Biochem Physiol A Comp Physiol. 1991;100(4):975–985. doi: 10.1016/0300-9629(91)90325-7. [DOI] [PubMed] [Google Scholar]
- Schultheiss-Grassi P. P., Wessiken R., Dobson J. TEM investigations of biogenic magnetite extracted from the human hippocampus. Biochim Biophys Acta. 1999 Jan 4;1426(1):212–216. doi: 10.1016/s0304-4165(98)00160-3. [DOI] [PubMed] [Google Scholar]
- Weir M. P., Peters T. J., Gibson J. F. Electron spin resonance studies of splenic ferritin and haemosiderin. Biochim Biophys Acta. 1985 Apr 29;828(3):298–305. doi: 10.1016/0167-4838(85)90311-5. [DOI] [PubMed] [Google Scholar]