Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):1024–1035. doi: 10.1016/S0006-3495(00)76661-6

cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera.

F Umenishi 1, J M Verbavatz 1, A S Verkman 1
PMCID: PMC1300706  PMID: 10653816

Abstract

To study the membrane mobility of aquaporin water channels, clones of stably transfected LLC-PK1 cells were isolated with plasma membrane expression of GFP-AQP1 and GFP-AQP2, in which the green fluorescent protein (GFP) was fused upstream and in-frame to each aquaporin (AQP). The GFP fusion did not affect AQP tetrameric association or water transport function. GFP-AQP lateral mobility was measured by irreversibly bleaching a spot (diameter 0.8 microm) on the membrane with an Argon laser beam (488 nm) and following the fluorescence recovery into the bleached area resulting from GFP translational diffusion. In cells expressing GFP-AQP1, fluorescence recovered to >96% of its initial level with t(1/2) of 38 +/- 2 s (23 degrees C) and 21 +/- 1 s (37 degrees C), giving diffusion coefficients (D) of 5.3 and 9.3 x 10(-11) cm(2)/s. GFP-AQP1 diffusion was abolished by paraformaldehyde fixation, slowed >50-fold by the cholesterol-binding agent filipin, but not affected by cAMP agonists. In cells expressing GFP-AQP2, fluorescence recovered to >98% with D of 5.7 and 9.0 x 10(-11) cm(2)/s at 23 degrees C and 37 degrees C. In contrast to results for GFP-AQP1, the cAMP agonist forskolin slowed GFP-AQP2 mobility by up to tenfold. The cAMP slowing was blocked by actin filament disruption with cytochalasin D, by K(+)-depletion in combination with hypotonic shock, and by mutation of the protein kinase A phosphorylation consensus site (S256A) at the AQP2 C-terminus. These results indicate unregulated diffusion of AQP1 in membranes, but regulated AQP2 diffusion that was dependent on phosphorylation at serine 256, and an intact actin cytoskeleton and clathrin coated pit. The cAMP-induced immobilization of phosphorylated AQP2 provides evidence for AQP2-protein interactions that may be important for retention of AQP2 in specialized membrane domains for efficient membrane recycling.

Full Text

The Full Text of this article is available as a PDF (681.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai C., Fukuda N., Song Y., Ma T., Matthay M. A., Verkman A. S. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest. 1999 Feb;103(4):555–561. doi: 10.1172/JCI4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barak L. S., Ferguson S. S., Zhang J., Martenson C., Meyer T., Caron M. G. Internal trafficking and surface mobility of a functionally intact beta2-adrenergic receptor-green fluorescent protein conjugate. Mol Pharmacol. 1997 Feb;51(2):177–184. doi: 10.1124/mol.51.2.177. [DOI] [PubMed] [Google Scholar]
  3. Brown D., Katsura T., Gustafson C. E. Cellular mechanisms of aquaporin trafficking. Am J Physiol. 1998 Sep;275(3 Pt 2):F328–F331. doi: 10.1152/ajprenal.1998.275.3.F328. [DOI] [PubMed] [Google Scholar]
  4. Brown D., Stow J. L. Protein trafficking and polarity in kidney epithelium: from cell biology to physiology. Physiol Rev. 1996 Jan;76(1):245–297. doi: 10.1152/physrev.1996.76.1.245. [DOI] [PubMed] [Google Scholar]
  5. Cheng A., van Hoek A. N., Yeager M., Verkman A. S., Mitra A. K. Three-dimensional organization of a human water channel. Nature. 1997 Jun 5;387(6633):627–630. doi: 10.1038/42517. [DOI] [PubMed] [Google Scholar]
  6. Cho M. R., Knowles D. W., Smith B. L., Moulds J. J., Agre P., Mohandas N., Golan D. E. Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells. Biophys J. 1999 Feb;76(2):1136–1144. doi: 10.1016/S0006-3495(99)77278-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dayel M. J., Hom E. F., Verkman A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys J. 1999 May;76(5):2843–2851. doi: 10.1016/S0006-3495(99)77438-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deen P. M., Croes H., van Aubel R. A., Ginsel L. A., van Os C. H. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest. 1995 May;95(5):2291–2296. doi: 10.1172/JCI117920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deen P. M., Rijss J. P., Mulders S. M., Errington R. J., van Baal J., van Os C. H. Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. J Am Soc Nephrol. 1997 Oct;8(10):1493–1501. doi: 10.1681/ASN.V8101493. [DOI] [PubMed] [Google Scholar]
  10. Deen P. M., Verdijk M. A., Knoers N. V., Wieringa B., Monnens L. A., van Os C. H., van Oost B. A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994 Apr 1;264(5155):92–95. doi: 10.1126/science.8140421. [DOI] [PubMed] [Google Scholar]
  11. Deen P. M., van Os C. H. Epithelial aquaporins. Curr Opin Cell Biol. 1998 Aug;10(4):435–442. doi: 10.1016/s0955-0674(98)80055-0. [DOI] [PubMed] [Google Scholar]
  12. Feder T. J., Chang E. Y., Holowka D., Webb W. W. Disparate modulation of plasma membrane protein lateral mobility by various cell permeabilizing agents. J Cell Physiol. 1994 Jan;158(1):7–16. doi: 10.1002/jcp.1041580103. [DOI] [PubMed] [Google Scholar]
  13. Fushimi K., Sasaki S., Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997 Jun 6;272(23):14800–14804. doi: 10.1074/jbc.272.23.14800. [DOI] [PubMed] [Google Scholar]
  14. Gustafson C. E., Levine S., Katsura T., McLaughlin M., Aleixo M. D., Tamarappoo B. K., Verkman A. S., Brown D. Vasopressin regulated trafficking of a green fluorescent protein-aquaporin 2 chimera in LLC-PK1 cells. Histochem Cell Biol. 1998 Oct;110(4):377–386. doi: 10.1007/s004180050298. [DOI] [PubMed] [Google Scholar]
  15. Hansen S. H., Sandvig K., van Deurs B. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J Cell Biol. 1993 Oct;123(1):89–97. doi: 10.1083/jcb.123.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Himpens B., De Smedt H., Droogmans G., Casteels R. Differences in regulation between nuclear and cytoplasmic Ca2+ in cultured smooth muscle cells. Am J Physiol. 1992 Jul;263(1 Pt 1):C95–105. doi: 10.1152/ajpcell.1992.263.1.C95. [DOI] [PubMed] [Google Scholar]
  17. Inoue T., Nielsen S., Mandon B., Terris J., Kishore B. K., Knepper M. A. SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Physiol. 1998 Nov;275(5 Pt 2):F752–F760. doi: 10.1152/ajprenal.1998.275.5.F752. [DOI] [PubMed] [Google Scholar]
  18. James D. E., Piper R. C., Slot J. W. Insulin stimulation of GLUT-4 translocation: a model for regulated recycling. Trends Cell Biol. 1994 Apr;4(4):120–126. doi: 10.1016/0962-8924(94)90066-3. [DOI] [PubMed] [Google Scholar]
  19. Kao H. P., Verkman A. S. Construction and performance of a photobleaching recovery apparatus with microsecond time resolution. Biophys Chem. 1996 Mar 7;59(1-2):203–210. doi: 10.1016/0301-4622(95)00139-5. [DOI] [PubMed] [Google Scholar]
  20. Katsura T., Gustafson C. E., Ausiello D. A., Brown D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol. 1997 Jun;272(6 Pt 2):F817–F822. [PubMed] [Google Scholar]
  21. Katsura T., Verbavatz J. M., Farinas J., Ma T., Ausiello D. A., Verkman A. S., Brown D. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7212–7216. doi: 10.1073/pnas.92.16.7212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Knepper M. A., Inoue T. Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr Opin Cell Biol. 1997 Aug;9(4):560–564. doi: 10.1016/s0955-0674(97)80034-8. [DOI] [PubMed] [Google Scholar]
  23. Kornau H. C., Seeburg P. H., Kennedy M. B. Interaction of ion channels and receptors with PDZ domain proteins. Curr Opin Neurobiol. 1997 Jun;7(3):368–373. doi: 10.1016/s0959-4388(97)80064-5. [DOI] [PubMed] [Google Scholar]
  24. Lee M. D., King L. S., Agre P. The aquaporin family of water channel proteins in clinical medicine. Medicine (Baltimore) 1997 May;76(3):141–156. doi: 10.1097/00005792-199705000-00001. [DOI] [PubMed] [Google Scholar]
  25. Lencer W. I., Verkman A. S., Arnaout M. A., Ausiello D. A., Brown D. Endocytic vesicles from renal papilla which retrieve the vasopressin-sensitive water channel do not contain a functional H+ ATPase. J Cell Biol. 1990 Aug;111(2):379–389. doi: 10.1083/jcb.111.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ma T., Yang B., Gillespie A., Carlson E. J., Epstein C. J., Verkman A. S. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem. 1998 Feb 20;273(8):4296–4299. doi: 10.1074/jbc.273.8.4296. [DOI] [PubMed] [Google Scholar]
  27. Madshus I. H., Sandvig K., Olsnes S., van Deurs B. Effect of reduced endocytosis induced by hypotonic shock and potassium depletion on the infection of Hep 2 cells by picornaviruses. J Cell Physiol. 1987 Apr;131(1):14–22. doi: 10.1002/jcp.1041310104. [DOI] [PubMed] [Google Scholar]
  28. Mandon B., Chou C. L., Nielsen S., Knepper M. A. Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest. 1996 Aug 15;98(4):906–913. doi: 10.1172/JCI118873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marples D., Barber B., Taylor A. Effect of a dynein inhibitor on vasopressin action in toad urinary bladder. J Physiol. 1996 Feb 1;490(Pt 3):767–774. doi: 10.1113/jphysiol.1996.sp021184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marples D., Schroer T. A., Ahrens N., Taylor A., Knepper M. A., Nielsen S. Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol. 1998 Feb;274(2 Pt 2):F384–F394. doi: 10.1152/ajprenal.1998.274.2.F384. [DOI] [PubMed] [Google Scholar]
  31. Nelson S., Horvat R. D., Malvey J., Roess D. A., Barisas B. G., Clay C. M. Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology. 1999 Feb;140(2):950–957. doi: 10.1210/endo.140.2.6518. [DOI] [PubMed] [Google Scholar]
  32. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nielsen S., Kwon T. H., Christensen B. M., Promeneur D., Frøkiaer J., Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol. 1999 Mar;10(3):647–663. doi: 10.1681/ASN.V103647. [DOI] [PubMed] [Google Scholar]
  34. Nielsen S., Marples D., Birn H., Mohtashami M., Dalby N. O., Trimble M., Knepper M. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest. 1995 Oct;96(4):1834–1844. doi: 10.1172/JCI118229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Niv H., Gutman O., Henis Y. I., Kloog Y. Membrane interactions of a constitutively active GFP-Ki-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J Biol Chem. 1999 Jan 15;274(3):1606–1613. doi: 10.1074/jbc.274.3.1606. [DOI] [PubMed] [Google Scholar]
  36. Olveczky B. P., Verkman A. S. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J. 1998 May;74(5):2722–2730. doi: 10.1016/S0006-3495(98)77978-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Partikian A., Olveczky B., Swaminathan R., Li Y., Verkman A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol. 1998 Feb 23;140(4):821–829. doi: 10.1083/jcb.140.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Periasamy N., Bicknese S., Verkman A. S. Reversible photobleaching of fluorescein conjugates in air-saturated viscous solutions: singlet and triplet state quenching by tryptophan. Photochem Photobiol. 1996 Mar;63(3):265–271. doi: 10.1111/j.1751-1097.1996.tb03023.x. [DOI] [PubMed] [Google Scholar]
  39. Shi L. B., Skach W. R., Verkman A. S. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. J Biol Chem. 1994 Apr 8;269(14):10417–10422. [PubMed] [Google Scholar]
  40. Simon H., Gao Y., Franki N., Hays R. M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993 Sep;265(3 Pt 1):C757–C762. doi: 10.1152/ajpcell.1993.265.3.C757. [DOI] [PubMed] [Google Scholar]
  41. Smith B. L., Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem. 1991 Apr 5;266(10):6407–6415. [PubMed] [Google Scholar]
  42. Strange K., Willingham M. C., Handler J. S., Harris H. W., Jr Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol. 1988 Jul;103(1):17–28. doi: 10.1007/BF01871929. [DOI] [PubMed] [Google Scholar]
  43. Swaminathan R., Bicknese S., Periasamy N., Verkman A. S. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys J. 1996 Aug;71(2):1140–1151. doi: 10.1016/S0006-3495(96)79316-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tamarappoo B. K., Verkman A. S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998 May 15;101(10):2257–2267. doi: 10.1172/JCI2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tamarappoo B. K., Yang B., Verkman A. S. Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J Biol Chem. 1999 Dec 3;274(49):34825–34831. doi: 10.1074/jbc.274.49.34825. [DOI] [PubMed] [Google Scholar]
  47. Umenishi F., Verkman A. S. Isolation of the human aquaporin-1 promoter and functional characterization in human erythroleukemia cell lines. Genomics. 1998 Feb 1;47(3):341–349. doi: 10.1006/geno.1997.5125. [DOI] [PubMed] [Google Scholar]
  48. Valenti G., Frigeri A., Ronco P. M., D'Ettorre C., Svelto M. Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. J Biol Chem. 1996 Oct 4;271(40):24365–24370. doi: 10.1074/jbc.271.40.24365. [DOI] [PubMed] [Google Scholar]
  49. Valenti G., Procino G., Liebenhoff U., Frigeri A., Benedetti P. A., Ahnert-Hilger G., Nürnberg B., Svelto M., Rosenthal W. A heterotrimeric G protein of the Gi family is required for cAMP-triggered trafficking of aquaporin 2 in kidney epithelial cells. J Biol Chem. 1998 Aug 28;273(35):22627–22634. doi: 10.1074/jbc.273.35.22627. [DOI] [PubMed] [Google Scholar]
  50. Verbavatz J. M., Brown D., Sabolić I., Valenti G., Ausiello D. A., Van Hoek A. N., Ma T., Verkman A. S. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol. 1993 Nov;123(3):605–618. doi: 10.1083/jcb.123.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Verbavatz J. M., Ma T., Gobin R., Verkman A. S. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci. 1997 Nov;110(Pt 22):2855–2860. doi: 10.1242/jcs.110.22.2855. [DOI] [PubMed] [Google Scholar]
  52. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  53. Verkman A. S., van Hoek A. N., Ma T., Frigeri A., Skach W. R., Mitra A., Tamarappoo B. K., Farinas J. Water transport across mammalian cell membranes. Am J Physiol. 1996 Jan;270(1 Pt 1):C12–C30. doi: 10.1152/ajpcell.1996.270.1.C12. [DOI] [PubMed] [Google Scholar]
  54. Walz T., Hirai T., Murata K., Heymann J. B., Mitsuoka K., Fujiyoshi Y., Smith B. L., Agre P., Engel A. The three-dimensional structure of aquaporin-1. Nature. 1997 Jun 5;387(6633):624–627. doi: 10.1038/42512. [DOI] [PubMed] [Google Scholar]
  55. Yamamoto T., Sasaki S. Aquaporins in the kidney: emerging new aspects. Kidney Int. 1998 Oct;54(4):1041–1051. doi: 10.1046/j.1523-1755.1998.00123.x. [DOI] [PubMed] [Google Scholar]
  56. Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]
  57. Zhang R., Skach W., Hasegawa H., van Hoek A. N., Verkman A. S. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J Cell Biol. 1993 Jan;120(2):359–369. doi: 10.1083/jcb.120.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. van Hoek A. N., Wiener M. C., Verbavatz J. M., Brown D., Lipniunas P. H., Townsend R. R., Verkman A. S. Purification and structure-function analysis of native, PNGase F-treated, and endo-beta-galactosidase-treated CHIP28 water channels. Biochemistry. 1995 Feb 21;34(7):2212–2219. doi: 10.1021/bi00007a015. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES