Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):1036–1041. doi: 10.1016/S0006-3495(00)76662-8

Torque-speed relationship of the flagellar rotary motor of Escherichia coli.

X Chen 1, H C Berg 1
PMCID: PMC1300707  PMID: 10653817

Abstract

The output of a rotary motor is characterized by its torque and speed. We measured the torque-speed relationship of the flagellar rotary motor of Escherichia coli by a new method. Small latex spheres were attached to flagellar stubs on cells fixed to the surface of a glass slide. The angular speeds of the spheres were monitored in a weak optical trap by back-focal-plane interferometry in solutions containing different concentrations of the viscous agent Ficoll. Plots of relative torque (viscosity x speed) versus speed were obtained over a wide dynamic range (up to speeds of approximately 300 Hz) at three different temperatures, 22.7, 17.7, and 15.8 degrees C. Results obtained earlier by electrorotation (, Biophys. J. 65:2201-2216) were confirmed. The motor operates in two dynamic regimes. At 23 degrees C, the torque is approximately constant up to a knee speed of nearly 200 Hz, and then it falls rapidly with speed to a zero-torque speed of approximately 350 Hz. In the low-speed regime, torque is insensitive to changes in temperature. In the high-speed regime, it decreases markedly at lower temperature. These results are consistent with models in which torque is generated by a powerstroke mechanism (, Biophys. J. 76:580-587).

Full Text

The Full Text of this article is available as a PDF (79.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg H. C., Block S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol. 1984 Nov;130(11):2915–2920. doi: 10.1099/00221287-130-11-2915. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Turner L. Torque generated by the flagellar motor of Escherichia coli. Biophys J. 1993 Nov;65(5):2201–2216. doi: 10.1016/S0006-3495(93)81278-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry R. M., Armitage J. P. The bacterial flagella motor. Adv Microb Physiol. 1999;41:291–337. doi: 10.1016/s0065-2911(08)60169-1. [DOI] [PubMed] [Google Scholar]
  4. Berry R. M., Berg H. C. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14433–14437. doi: 10.1073/pnas.94.26.14433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry R. M., Berg H. C. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys J. 1999 Jan;76(1 Pt 1):580–587. doi: 10.1016/S0006-3495(99)77226-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blair D. F., Berg H. C. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell. 1990 Feb 9;60(3):439–449. doi: 10.1016/0092-8674(90)90595-6. [DOI] [PubMed] [Google Scholar]
  7. Caplan S. R., Kara-Ivanov M. The bacterial flagellar motor. Int Rev Cytol. 1993;147:97–164. doi: 10.1016/s0074-7696(08)60767-6. [DOI] [PubMed] [Google Scholar]
  8. DeCoursey T. E., Cherny V. V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol. 1998 Oct;112(4):503–522. doi: 10.1085/jgp.112.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elston T. C., Oster G. Protein turbines. I: The bacterial flagellar motor. Biophys J. 1997 Aug;73(2):703–721. doi: 10.1016/S0006-3495(97)78104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fung D. C., Berg H. C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature. 1995 Jun 29;375(6534):809–812. doi: 10.1038/375809a0. [DOI] [PubMed] [Google Scholar]
  11. Khan S., Berg H. C. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell. 1983 Mar;32(3):913–919. doi: 10.1016/0092-8674(83)90076-4. [DOI] [PubMed] [Google Scholar]
  12. Macnab R., Koshland D. E., Jr Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella. J Mol Biol. 1974 Apr 15;84(3):399–406. doi: 10.1016/0022-2836(74)90448-3. [DOI] [PubMed] [Google Scholar]
  13. Meister M., Berg H. C. The stall torque of the bacterial flagellar motor. Biophys J. 1987 Sep;52(3):413–419. doi: 10.1016/S0006-3495(87)83230-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meister M., Caplan S. R., Berg H. C. Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force. Biophys J. 1989 May;55(5):905–914. doi: 10.1016/S0006-3495(89)82889-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zhou J., Sharp L. L., Tang H. L., Lloyd S. A., Billings S., Braun T. F., Blair D. F. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol. 1998 May;180(10):2729–2735. doi: 10.1128/jb.180.10.2729-2735.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES