Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Feb;78(2):1042–1058. doi: 10.1016/S0006-3495(00)76663-X

Sequence dependence of energy transfer in DNA oligonucleotides.

D G Xu 1, T M Nordlund 1
PMCID: PMC1300708  PMID: 10653818

Abstract

The sequence, temperature, concentration, and solvent dependence of singlet energy transfer from normal DNA bases to the 2-aminopurine base in synthesized DNA oligomers were investigated by optical spectroscopy. Transfer was shown directly by a variable fluorescence excitation band at 260-280 nm. Adenine (A) is the most efficient energy donor by an order of magnitude. Stacks of A adjacent to 2AP act as an antenna for 2AP excitation. An interposed G, C, or T base between A and 2AP effectively blocks transfer from A to 2AP. Base stacking facilitates transfer, while base pairing reduces energy transfer slightly. The efficiency is differentially temperature dependent in single- and double-stranded oligomers and is highest below 0 degrees C in samples measured. An efficiency transition occurs well below the melting transition of a double-stranded decamer. The transfer efficiency in the duplex decamer d(CTGA[2AP]TTCAG)(2) is moderately dependent on the sample and salt concentration and is solvent dependent. Transfer at physiological temperature over more than a few bases is improbable, except along consecutive A's, indicating that singlet energy transfer is not a major factor in the localization of UV damage in DNA. These results have features in common with recently observed electron transfer from 2AP to G in oligonucleotides.

Full Text

The Full Text of this article is available as a PDF (246.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan B. W., Reich N. O., Beechem J. M. Measurement of the absolute temporal coupling between DNA binding and base flipping. Biochemistry. 1999 Apr 27;38(17):5308–5314. doi: 10.1021/bi9900020. [DOI] [PubMed] [Google Scholar]
  2. Ballini J. P., Daniels M., Vigny P. Synchrotron-excited time-resolved fluorescence spectroscopy of adenosine, protonated adenosine and 6N,6N-dimethyladenosine in aqueous solution at room temperature. Eur Biophys J. 1988;16(3):131–142. doi: 10.1007/BF00261899. [DOI] [PubMed] [Google Scholar]
  3. Ballini J. P., Vigny P., Thomas G., Favre A. Intramolecular energy transfer in native tRNA at room temperature. Photochem Photobiol. 1976 Oct;24(4):321–329. doi: 10.1111/j.1751-1097.1976.tb06832.x. [DOI] [PubMed] [Google Scholar]
  4. Bergmanson J. P., Sheldon T. M. Ultraviolet radiation revisited. CLAO J. 1997 Jul;23(3):196–204. [PubMed] [Google Scholar]
  5. Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
  6. Brunk C. F. Distribution of dimers in ultraviolet-irradiated DNA. Nat New Biol. 1973 Jan 17;241(107):74–76. doi: 10.1038/newbio241074a0. [DOI] [PubMed] [Google Scholar]
  7. Burr J. G., Summers W. A., Lee Y. S. Energy transfer in fluorescent derivatives of uracil and thymine;. J Am Chem Soc. 1975 Jan 8;97(1):245–248. doi: 10.1021/ja00834a073. [DOI] [PubMed] [Google Scholar]
  8. Cadet J., Voituriez L., Hahn B. S., Wang S. Y. Separation of cyclobutyl dimers of thymine and thymidine by high-performance liquid chromatography and thin-layer chromatography. J Chromatogr. 1980 Jul 4;195(1):139–145. doi: 10.1016/s0021-9673(00)81552-6. [DOI] [PubMed] [Google Scholar]
  9. Daniels M., Hauswirth W. Fluorescence of the purine and pyrimidine bases of the nucleic acids in neutral aqueous solution at 300 degrees K. Science. 1971 Feb 19;171(3972):675–677. doi: 10.1126/science.171.3972.675. [DOI] [PubMed] [Google Scholar]
  10. Fisher G. J., Wang Z. Q., Datta S. C., Varani J., Kang S., Voorhees J. J. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997 Nov 13;337(20):1419–1428. doi: 10.1056/NEJM199711133372003. [DOI] [PubMed] [Google Scholar]
  11. Frank-Kamenetskii M. D., Lazurkin Y. S. Conformational changes in DNA molecules. Annu Rev Biophys Bioeng. 1974;3(0):127–150. doi: 10.1146/annurev.bb.03.060174.001015. [DOI] [PubMed] [Google Scholar]
  12. Ge G., Georghiou S. Excited-state properties of the alternating polynucleotide poly(dA-dT).poly(dA-dT). Photochem Photobiol. 1991 Aug;54(2):301–305. doi: 10.1111/j.1751-1097.1991.tb02020.x. [DOI] [PubMed] [Google Scholar]
  13. Ge G., Georghiou S. Room-temperature fluorescence properties of the polynucleotide polydA.polydT. Photochem Photobiol. 1991 Sep;54(3):477–480. doi: 10.1111/j.1751-1097.1991.tb02044.x. [DOI] [PubMed] [Google Scholar]
  14. Georghiou S., Zhu S., Weidner R., Huang C. R., Ge G. Singlet-singlet energy transfer along the helix of a double-stranded nucleic acid at room temperature. J Biomol Struct Dyn. 1990 Dec;8(3):657–674. doi: 10.1080/07391102.1990.10507834. [DOI] [PubMed] [Google Scholar]
  15. Gordon L. K., Haseltine W. A. Quantitation of cyclobutane pyrimidine dimer formation in double- and single-stranded DNA fragments of defined sequence. Radiat Res. 1982 Jan;89(1):99–112. [PubMed] [Google Scholar]
  16. Guéron M., Eisinger J., Shulman R. G. Excited states of nucleotides and singlet energy transfer in polynucleotides. J Chem Phys. 1967 Nov 15;47(10):4077–4091. doi: 10.1063/1.1701580. [DOI] [PubMed] [Google Scholar]
  17. Hauswirth W., Wang S. Y. Excited state processes and solution conformation of dipyrimidine adducts. Photochem Photobiol. 1977 Feb;25(2):161–166. doi: 10.1111/j.1751-1097.1977.tb06892.x. [DOI] [PubMed] [Google Scholar]
  18. Holz B., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998 Feb 15;26(4):1076–1083. doi: 10.1093/nar/26.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang C. R., Georghiou S. Room-temperature steady-state fluorescence properties of poly(dG-dC).poly(dG-dC). Photochem Photobiol. 1992 Jul;56(1):95–99. doi: 10.1111/j.1751-1097.1992.tb09608.x. [DOI] [PubMed] [Google Scholar]
  20. Kelley S. O., Barton J. K. Electron transfer between bases in double helical DNA. Science. 1999 Jan 15;283(5400):375–381. doi: 10.1126/science.283.5400.375. [DOI] [PubMed] [Google Scholar]
  21. LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lamola A. A. Specific formation of thymine dimers in DNA. Photochem Photobiol. 1969 Mar;9(3):291–294. doi: 10.1111/j.1751-1097.1969.tb07292.x. [DOI] [PubMed] [Google Scholar]
  23. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  24. Lycksell P. O., Gräslund A., Claesens F., McLaughlin L. W., Larsson U., Rigler R. Base pair opening dynamics of a 2-aminopurine substituted Eco RI restriction sequence and its unsubstituted counterpart in oligonucleotides. Nucleic Acids Res. 1987 Nov 11;15(21):9011–9025. doi: 10.1093/nar/15.21.9011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McLaughlin L. W., Leong T., Benseler F., Piel N. A new approach to the synthesis of a protected 2-aminopurine derivative and its incorporation into oligodeoxynucleotides containing the Eco RI and Bam HI recognition sites. Nucleic Acids Res. 1988 Jun 24;16(12):5631–5644. doi: 10.1093/nar/16.12.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mitchell D. L. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988 Jul;48(1):51–57. doi: 10.1111/j.1751-1097.1988.tb02785.x. [DOI] [PubMed] [Google Scholar]
  27. Nordlund T. M., Andersson S., Nilsson L., Rigler R., Gräslund A., McLaughlin L. W. Structure and dynamics of a fluorescent DNA oligomer containing the EcoRI recognition sequence: fluorescence, molecular dynamics, and NMR studies. Biochemistry. 1989 Nov 14;28(23):9095–9103. doi: 10.1021/bi00449a021. [DOI] [PubMed] [Google Scholar]
  28. Nordlund T. M., Xu D., Evans K. O. Excitation energy transfer in DNA: duplex melting and transfer from normal bases to 2-aminopurine. Biochemistry. 1993 Nov 16;32(45):12090–12095. doi: 10.1021/bi00096a020. [DOI] [PubMed] [Google Scholar]
  29. Randle H. W. Suntanning: differences in perceptions throughout history. Mayo Clin Proc. 1997 May;72(5):461–466. doi: 10.4065/72.5.461. [DOI] [PubMed] [Google Scholar]
  30. SETLOW J. K., SETLOW R. B. Ultraviolet action spectra of ordered and disordered DNA. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1619–1627. doi: 10.1073/pnas.47.10.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shafranovskaya N. N., Trifonov E. N., Lazurkin Y. S., Frank-Kamenetskii M. D. Clustering of thymine dimers in ultraviolet irradiated DNA and the long-range transfer of electronic excitation along the molecule. Nat New Biol. 1973 Jan 10;241(106):58–60. doi: 10.1038/newbio241058a0. [DOI] [PubMed] [Google Scholar]
  32. Sutherland B. M., Sutherland J. C. Mechanisms of inhibition of pyrimidine dimer formation in deoxyribonucleic acid by acridine dyes. Biophys J. 1969 Mar;9(3):292–302. doi: 10.1016/S0006-3495(69)86387-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Umlas M. E., Franklin W. A., Chan G. L., Haseltine W. A. Ultraviolet light irradiation of defined-sequence DNA under conditions of chemical photosensitization. Photochem Photobiol. 1985 Sep;42(3):265–273. doi: 10.1111/j.1751-1097.1985.tb08941.x. [DOI] [PubMed] [Google Scholar]
  34. Urbach F. Ultraviolet radiation and skin cancer of humans. J Photochem Photobiol B. 1997 Aug;40(1):3–7. doi: 10.1016/s1011-1344(97)00029-8. [DOI] [PubMed] [Google Scholar]
  35. Varghese A. J. Photochemistry of nucleic acids and their constituents. Photophysiology. 1972;(7):207–274. [PubMed] [Google Scholar]
  36. Varghese A. J., Wang S. Y. Ultraviolet irradiation of DNA in vitro and in vivo produces a 3d thymine-derived product. Science. 1967 May 19;156(3777):955–957. doi: 10.1126/science.156.3777.955. [DOI] [PubMed] [Google Scholar]
  37. Ward D. C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969 Mar 10;244(5):1228–1237. [PubMed] [Google Scholar]
  38. Xu D., Evans K. O., Nordlund T. M. Melting and premelting transitions of an oligomer measured by DNA base fluorescence and absorption. Biochemistry. 1994 Aug 16;33(32):9592–9599. doi: 10.1021/bi00198a027. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES