Abstract
The sequence, temperature, concentration, and solvent dependence of singlet energy transfer from normal DNA bases to the 2-aminopurine base in synthesized DNA oligomers were investigated by optical spectroscopy. Transfer was shown directly by a variable fluorescence excitation band at 260-280 nm. Adenine (A) is the most efficient energy donor by an order of magnitude. Stacks of A adjacent to 2AP act as an antenna for 2AP excitation. An interposed G, C, or T base between A and 2AP effectively blocks transfer from A to 2AP. Base stacking facilitates transfer, while base pairing reduces energy transfer slightly. The efficiency is differentially temperature dependent in single- and double-stranded oligomers and is highest below 0 degrees C in samples measured. An efficiency transition occurs well below the melting transition of a double-stranded decamer. The transfer efficiency in the duplex decamer d(CTGA[2AP]TTCAG)(2) is moderately dependent on the sample and salt concentration and is solvent dependent. Transfer at physiological temperature over more than a few bases is improbable, except along consecutive A's, indicating that singlet energy transfer is not a major factor in the localization of UV damage in DNA. These results have features in common with recently observed electron transfer from 2AP to G in oligonucleotides.
Full Text
The Full Text of this article is available as a PDF (246.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan B. W., Reich N. O., Beechem J. M. Measurement of the absolute temporal coupling between DNA binding and base flipping. Biochemistry. 1999 Apr 27;38(17):5308–5314. doi: 10.1021/bi9900020. [DOI] [PubMed] [Google Scholar]
- Ballini J. P., Daniels M., Vigny P. Synchrotron-excited time-resolved fluorescence spectroscopy of adenosine, protonated adenosine and 6N,6N-dimethyladenosine in aqueous solution at room temperature. Eur Biophys J. 1988;16(3):131–142. doi: 10.1007/BF00261899. [DOI] [PubMed] [Google Scholar]
- Ballini J. P., Vigny P., Thomas G., Favre A. Intramolecular energy transfer in native tRNA at room temperature. Photochem Photobiol. 1976 Oct;24(4):321–329. doi: 10.1111/j.1751-1097.1976.tb06832.x. [DOI] [PubMed] [Google Scholar]
- Bergmanson J. P., Sheldon T. M. Ultraviolet radiation revisited. CLAO J. 1997 Jul;23(3):196–204. [PubMed] [Google Scholar]
- Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
- Brunk C. F. Distribution of dimers in ultraviolet-irradiated DNA. Nat New Biol. 1973 Jan 17;241(107):74–76. doi: 10.1038/newbio241074a0. [DOI] [PubMed] [Google Scholar]
- Burr J. G., Summers W. A., Lee Y. S. Energy transfer in fluorescent derivatives of uracil and thymine;. J Am Chem Soc. 1975 Jan 8;97(1):245–248. doi: 10.1021/ja00834a073. [DOI] [PubMed] [Google Scholar]
- Cadet J., Voituriez L., Hahn B. S., Wang S. Y. Separation of cyclobutyl dimers of thymine and thymidine by high-performance liquid chromatography and thin-layer chromatography. J Chromatogr. 1980 Jul 4;195(1):139–145. doi: 10.1016/s0021-9673(00)81552-6. [DOI] [PubMed] [Google Scholar]
- Daniels M., Hauswirth W. Fluorescence of the purine and pyrimidine bases of the nucleic acids in neutral aqueous solution at 300 degrees K. Science. 1971 Feb 19;171(3972):675–677. doi: 10.1126/science.171.3972.675. [DOI] [PubMed] [Google Scholar]
- Fisher G. J., Wang Z. Q., Datta S. C., Varani J., Kang S., Voorhees J. J. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997 Nov 13;337(20):1419–1428. doi: 10.1056/NEJM199711133372003. [DOI] [PubMed] [Google Scholar]
- Frank-Kamenetskii M. D., Lazurkin Y. S. Conformational changes in DNA molecules. Annu Rev Biophys Bioeng. 1974;3(0):127–150. doi: 10.1146/annurev.bb.03.060174.001015. [DOI] [PubMed] [Google Scholar]
- Ge G., Georghiou S. Excited-state properties of the alternating polynucleotide poly(dA-dT).poly(dA-dT). Photochem Photobiol. 1991 Aug;54(2):301–305. doi: 10.1111/j.1751-1097.1991.tb02020.x. [DOI] [PubMed] [Google Scholar]
- Ge G., Georghiou S. Room-temperature fluorescence properties of the polynucleotide polydA.polydT. Photochem Photobiol. 1991 Sep;54(3):477–480. doi: 10.1111/j.1751-1097.1991.tb02044.x. [DOI] [PubMed] [Google Scholar]
- Georghiou S., Zhu S., Weidner R., Huang C. R., Ge G. Singlet-singlet energy transfer along the helix of a double-stranded nucleic acid at room temperature. J Biomol Struct Dyn. 1990 Dec;8(3):657–674. doi: 10.1080/07391102.1990.10507834. [DOI] [PubMed] [Google Scholar]
- Gordon L. K., Haseltine W. A. Quantitation of cyclobutane pyrimidine dimer formation in double- and single-stranded DNA fragments of defined sequence. Radiat Res. 1982 Jan;89(1):99–112. [PubMed] [Google Scholar]
- Guéron M., Eisinger J., Shulman R. G. Excited states of nucleotides and singlet energy transfer in polynucleotides. J Chem Phys. 1967 Nov 15;47(10):4077–4091. doi: 10.1063/1.1701580. [DOI] [PubMed] [Google Scholar]
- Hauswirth W., Wang S. Y. Excited state processes and solution conformation of dipyrimidine adducts. Photochem Photobiol. 1977 Feb;25(2):161–166. doi: 10.1111/j.1751-1097.1977.tb06892.x. [DOI] [PubMed] [Google Scholar]
- Holz B., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998 Feb 15;26(4):1076–1083. doi: 10.1093/nar/26.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C. R., Georghiou S. Room-temperature steady-state fluorescence properties of poly(dG-dC).poly(dG-dC). Photochem Photobiol. 1992 Jul;56(1):95–99. doi: 10.1111/j.1751-1097.1992.tb09608.x. [DOI] [PubMed] [Google Scholar]
- Kelley S. O., Barton J. K. Electron transfer between bases in double helical DNA. Science. 1999 Jan 15;283(5400):375–381. doi: 10.1126/science.283.5400.375. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamola A. A. Specific formation of thymine dimers in DNA. Photochem Photobiol. 1969 Mar;9(3):291–294. doi: 10.1111/j.1751-1097.1969.tb07292.x. [DOI] [PubMed] [Google Scholar]
- LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
- Lycksell P. O., Gräslund A., Claesens F., McLaughlin L. W., Larsson U., Rigler R. Base pair opening dynamics of a 2-aminopurine substituted Eco RI restriction sequence and its unsubstituted counterpart in oligonucleotides. Nucleic Acids Res. 1987 Nov 11;15(21):9011–9025. doi: 10.1093/nar/15.21.9011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin L. W., Leong T., Benseler F., Piel N. A new approach to the synthesis of a protected 2-aminopurine derivative and its incorporation into oligodeoxynucleotides containing the Eco RI and Bam HI recognition sites. Nucleic Acids Res. 1988 Jun 24;16(12):5631–5644. doi: 10.1093/nar/16.12.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell D. L. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988 Jul;48(1):51–57. doi: 10.1111/j.1751-1097.1988.tb02785.x. [DOI] [PubMed] [Google Scholar]
- Nordlund T. M., Andersson S., Nilsson L., Rigler R., Gräslund A., McLaughlin L. W. Structure and dynamics of a fluorescent DNA oligomer containing the EcoRI recognition sequence: fluorescence, molecular dynamics, and NMR studies. Biochemistry. 1989 Nov 14;28(23):9095–9103. doi: 10.1021/bi00449a021. [DOI] [PubMed] [Google Scholar]
- Nordlund T. M., Xu D., Evans K. O. Excitation energy transfer in DNA: duplex melting and transfer from normal bases to 2-aminopurine. Biochemistry. 1993 Nov 16;32(45):12090–12095. doi: 10.1021/bi00096a020. [DOI] [PubMed] [Google Scholar]
- Randle H. W. Suntanning: differences in perceptions throughout history. Mayo Clin Proc. 1997 May;72(5):461–466. doi: 10.4065/72.5.461. [DOI] [PubMed] [Google Scholar]
- SETLOW J. K., SETLOW R. B. Ultraviolet action spectra of ordered and disordered DNA. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1619–1627. doi: 10.1073/pnas.47.10.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafranovskaya N. N., Trifonov E. N., Lazurkin Y. S., Frank-Kamenetskii M. D. Clustering of thymine dimers in ultraviolet irradiated DNA and the long-range transfer of electronic excitation along the molecule. Nat New Biol. 1973 Jan 10;241(106):58–60. doi: 10.1038/newbio241058a0. [DOI] [PubMed] [Google Scholar]
- Sutherland B. M., Sutherland J. C. Mechanisms of inhibition of pyrimidine dimer formation in deoxyribonucleic acid by acridine dyes. Biophys J. 1969 Mar;9(3):292–302. doi: 10.1016/S0006-3495(69)86387-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umlas M. E., Franklin W. A., Chan G. L., Haseltine W. A. Ultraviolet light irradiation of defined-sequence DNA under conditions of chemical photosensitization. Photochem Photobiol. 1985 Sep;42(3):265–273. doi: 10.1111/j.1751-1097.1985.tb08941.x. [DOI] [PubMed] [Google Scholar]
- Urbach F. Ultraviolet radiation and skin cancer of humans. J Photochem Photobiol B. 1997 Aug;40(1):3–7. doi: 10.1016/s1011-1344(97)00029-8. [DOI] [PubMed] [Google Scholar]
- Varghese A. J. Photochemistry of nucleic acids and their constituents. Photophysiology. 1972;(7):207–274. [PubMed] [Google Scholar]
- Varghese A. J., Wang S. Y. Ultraviolet irradiation of DNA in vitro and in vivo produces a 3d thymine-derived product. Science. 1967 May 19;156(3777):955–957. doi: 10.1126/science.156.3777.955. [DOI] [PubMed] [Google Scholar]
- Ward D. C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969 Mar 10;244(5):1228–1237. [PubMed] [Google Scholar]
- Xu D., Evans K. O., Nordlund T. M. Melting and premelting transitions of an oligomer measured by DNA base fluorescence and absorption. Biochemistry. 1994 Aug 16;33(32):9592–9599. doi: 10.1021/bi00198a027. [DOI] [PubMed] [Google Scholar]