Abstract
We showed recently that the high-salt transition of poly[d(G-C)]. poly[d(G-C)] between B-DNA and Z-DNA (at [NaCl] = 2.25 M or [MgCl(2)] = 0.7 M) can be ascribed to the lesser electrostatic free energy of the B form, due to better immersion of the phosphates in the solution. This property was incorporated in cylindrical DNA models that were analyzed by Poisson-Boltzmann theory. The results are insensitive to details of the models, and in fair agreement with experiment. In contrast, the Z form of the poly[d(G-m5C)] duplex is stabilized by very small concentrations of magnesium. We now show that this striking difference is accommodated quantitatively by the same electrostatic theory, without any adjustable parameter. The different responses to magnesium of the methylated and nonmethylated polymers do not come from stereospecific cation-DNA interactions: they stem from an experimentally derived, modest difference in the nonelectrostatic component of the free energy difference (or NFED) between the Z and B forms. The NFED is derived from circular DNA measurements. The differences between alkaline earth and transition metal ions are explained by weak coordination of the latter. The theory also explains the induction of the transition by micromolar concentrations of cobalt hexammine, again without specific binding or adjustable parameters. Hence, in the case of the B-Z transition as in others (e.g., the folding of tRNA and of ribozymes), the effect of multivalent cations on nucleic acid structure is mediated primarily by nonspecific ion-polyelectrolyte interactions. We propose this as a general rule for which convincing counter-examples are lacking.
Full Text
The Full Text of this article is available as a PDF (189.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. F., Record M. T., Jr, Hart P. A. Sodium-23 NMR studies of cation-DNA interactions. Biophys Chem. 1978 Jan;7(4):301–316. doi: 10.1016/0301-4622(78)85007-8. [DOI] [PubMed] [Google Scholar]
- Behe M. J., Felsenfeld G., Szu S. C., Charney E. Temperature-dependent conformational transitions in poly(dG-dC) and poly(dG-m5dC). Biopolymers. 1985 Feb;24(2):289–300. doi: 10.1002/bip.360240202. [DOI] [PubMed] [Google Scholar]
- Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen H. H., Behe M. J., Rau D. C. Critical amount of oligovalent ion binding required for the B-Z transition of poly (dG-m5dC). Nucleic Acids Res. 1984 Mar 12;12(5):2381–2389. doi: 10.1093/nar/12.5.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demaret J. P., Guéron M. Composite cylinder models of DNA: application to the electrostatics of the B-Z transition. Biophys J. 1993 Oct;65(4):1700–1713. doi: 10.1016/S0006-3495(93)81213-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenley M. O., Manning G. S., Olson W. K. A numerical counterion condensation analysis of the B-Z transition of DNA. Biopolymers. 1990;30(13-14):1205–1213. doi: 10.1002/bip.360301306. [DOI] [PubMed] [Google Scholar]
- Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V. Application of polyelectrolyte theory to the study of the B-Z transition in DNA (1). J Biomol Struct Dyn. 1985 Aug;3(1):35–42. doi: 10.1080/07391102.1985.10508396. [DOI] [PubMed] [Google Scholar]
- Gao Y. G., Sriram M., Wang A. H. Crystallographic studies of metal ion-DNA interactions: different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Res. 1993 Aug 25;21(17):4093–4101. doi: 10.1093/nar/21.17.4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gessner R. V., Quigley G. J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations. Biochemistry. 1985 Jan 15;24(2):237–240. doi: 10.1021/bi00323a001. [DOI] [PubMed] [Google Scholar]
- Guéron M., Demaret J. P. A simple explanation of the electrostatics of the B-to-Z transition of DNA. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5740–5743. doi: 10.1073/pnas.89.13.5740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guéron M., Leroy J. L. Significance and mechanism of divalent-ion binding to transfer RNA. Biophys J. 1982 Jun;38(3):231–236. doi: 10.1016/S0006-3495(82)84553-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heus H. A., Pardi A. Nuclear magnetic resonance studies of the hammerhead ribozyme domain. Secondary structure formation and magnesium ion dependence. J Mol Biol. 1991 Jan 5;217(1):113–124. doi: 10.1016/0022-2836(91)90615-d. [DOI] [PubMed] [Google Scholar]
- Izatt R. M., Christensen J. J., Rytting J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev. 1971 Oct;71(5):439–481. doi: 10.1021/cr60273a002. [DOI] [PubMed] [Google Scholar]
- Katahira M., Kim M. H., Sugiyama T., Nishimura Y., Uesugi S. Two metal-binding sites in a lead ribozyme bound to competitively by Pb2+ and Mg2+--induced structural changes as revealed by NMR. Eur J Biochem. 1998 Aug 1;255(3):727–733. doi: 10.1046/j.1432-1327.1998.2550727.x. [DOI] [PubMed] [Google Scholar]
- Klement R., Soumpasis D. M., Jovin T. M. Computation of ionic distributions around charged biomolecular structures: results for right-handed and left-handed DNA. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4631–4635. doi: 10.1073/pnas.88.11.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legault P., Hoogstraten C. G., Metlitzky E., Pardi A. Order, dynamics and metal-binding in the lead-dependent ribozyme. J Mol Biol. 1998 Nov 27;284(2):325–335. doi: 10.1006/jmbi.1998.2181. [DOI] [PubMed] [Google Scholar]
- Leroy J. L., Guéron M. Electrostatic effects in divalent ion binding to tRNA. Biopolymers. 1977 Nov;16(11):2429–2446. doi: 10.1002/bip.1977.360161108. [DOI] [PubMed] [Google Scholar]
- Leroy J. L., Guéron M. The distance of manganese to phosphorus atoms of polynucleotides, and dynamics of binding. Biochimie. 1981 Nov-Dec;63(11-12):815–819. doi: 10.1016/s0300-9084(82)80265-4. [DOI] [PubMed] [Google Scholar]
- Leroy J. L., Guéron M., Thomas G., Favre A. Role of divalent ions in folding of tRNA. Eur J Biochem. 1977 Apr 15;74(3):567–574. doi: 10.1111/j.1432-1033.1977.tb11426.x. [DOI] [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- Misra V. K., Honig B. The electrostatic contribution to the B to Z transition of DNA. Biochemistry. 1996 Jan 30;35(4):1115–1124. doi: 10.1021/bi951463y. [DOI] [PubMed] [Google Scholar]
- Peck L. J., Wang J. C. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6206–6210. doi: 10.1073/pnas.80.20.6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl F. M., Jovin T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol. 1972 Jun 28;67(3):375–396. doi: 10.1016/0022-2836(72)90457-3. [DOI] [PubMed] [Google Scholar]
- Pohl F. M. Salt-induced transition between two double-helical forms of oligo (dC-dG). Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):113–117. doi: 10.1101/sqb.1983.047.01.014. [DOI] [PubMed] [Google Scholar]
- Schoenknecht T., Diebler H. Spectrophotometric and kinetic studies of the binding of Ni2+, Co2+, and Mg2+ to poly(dG-dC).poly(dG-dC). Determination of the stoichiometry of the Ni2+-induced B--->Z transition. J Inorg Biochem. 1993 Jun;50(4):283–298. doi: 10.1016/0162-0134(93)80055-e. [DOI] [PubMed] [Google Scholar]
- Simorre J. P., Legault P., Hangar A. B., Michiels P., Pardi A. A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. Biochemistry. 1997 Jan 21;36(3):518–525. doi: 10.1021/bi9620520. [DOI] [PubMed] [Google Scholar]
- Singleton C. K., Klysik J., Stirdivant S. M., Wells R. D. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 1982 Sep 23;299(5881):312–316. doi: 10.1038/299312a0. [DOI] [PubMed] [Google Scholar]
- Soumpasis D. M., Robert-Nicoud M., Jovin T. M. B-Z DNA conformational transition in 1:1 electrolytes: dependence upon counterion size. FEBS Lett. 1987 Mar 23;213(2):341–344. doi: 10.1016/0014-5793(87)81519-3. [DOI] [PubMed] [Google Scholar]
- Stirdivant S. M., Kłysik J., Wells R. D. Energetic and structural inter-relationship between DNA supercoiling and the right- to left-handed Z helix transitions in recombinant plasmids. J Biol Chem. 1982 Sep 10;257(17):10159–10165. [PubMed] [Google Scholar]
- Sági J., Szemzö A., Otvös L., Vorlícková M., Kypr J. Destabilization of the duplex and the high-salt Z-form of poly(dG-methyl5dC) by substitution of ethyl for the 5-methyl group. Int J Biol Macromol. 1991 Dec;13(6):329–336. doi: 10.1016/0141-8130(91)90013-k. [DOI] [PubMed] [Google Scholar]
- Thomas T. J., Messner R. P. Hexammineruthenium (III) chloride: a highly efficient promoter of the B-DNA to Z-DNA transition of poly-(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). Biochimie. 1988 Feb;70(2):221–226. doi: 10.1016/0300-9084(88)90064-8. [DOI] [PubMed] [Google Scholar]
- Thomas T. J., Thomas T. Conformational transitions of polynucleotides in the presence of rhodium complexes. J Biomol Struct Dyn. 1990 Jun;7(6):1221–1235. doi: 10.1080/07391102.1990.10508561. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
- Woisard A., Fazakerley G. V., Guschlbauer W. Z-DNA is formed by poly (dC-dG) and poly (dm5C-dG) at micro or nanomolar concentrations of some zinc(II) and copper(II) complexes. J Biomol Struct Dyn. 1985 Jun;2(6):1205–1220. doi: 10.1080/07391102.1985.10507633. [DOI] [PubMed] [Google Scholar]
- Zacharias W., O'Connor T. R., Larson J. E. Methylation of cytosine in the 5-position alters the structural and energetic properties of the supercoil-induced Z-helix and of B-Z junctions. Biochemistry. 1988 Apr 19;27(8):2970–2978. doi: 10.1021/bi00408a046. [DOI] [PubMed] [Google Scholar]
- van de Sande J. H., Jovin T. M. Z* DNA, the left-handed helical form of poly[d(G-C)] in MgCl2-ethanol, is biologically active. EMBO J. 1982;1(1):115–120. doi: 10.1002/j.1460-2075.1982.tb01133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Sande J. H., McIntosh L. P., Jovin T. M. Mn2+ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G-C)]. EMBO J. 1982;1(7):777–782. doi: 10.1002/j.1460-2075.1982.tb01247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]