Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1087–1093. doi: 10.1016/S0006-3495(00)76667-7

How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment.

M Bier 1, B M Bakker 1, H V Westerhoff 1
PMCID: PMC1300712  PMID: 10692299

Abstract

Of all the lifeforms that obtain their energy from glycolysis, yeast cells are among the most basic. Under certain conditions the concentrations of the glycolytic intermediates in yeast cells can oscillate. Individual yeast cells in a suspension can synchronize their oscillations to get in phase with each other. Although the glycolytic oscillations originate in the upper part of the glycolytic chain, the signaling agent in this synchronization appears to be acetaldehyde, a membrane-permeating metabolite at the bottom of the anaerobic part of the glycolytic chain. Here we address the issue of how a metabolite remote from the pacemaking origin of the oscillation may nevertheless control the synchronization. We present a quantitative model for glycolytic oscillations and their synchronization in terms of chemical kinetics. We show that, in essence, the common acetaldehyde concentration can be modeled as a small perturbation on the "pacemaker" whose effect on the period of the oscillations of cells in the same suspension is indeed such that a synchronization develops.

Full Text

The Full Text of this article is available as a PDF (94.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astumian RD, Chock PB, Tsong TY, Westerhoff HV. Effects of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phys Rev A Gen Phys. 1989 Jun 15;39(12):6416–6435. doi: 10.1103/physreva.39.6416. [DOI] [PubMed] [Google Scholar]
  2. BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
  3. Bier M., Teusink B., Kholodenko B. N., Westerhoff H. V. Control analysis of glycolytic oscillations. Biophys Chem. 1996 Nov 29;62(1-3):15–24. doi: 10.1016/s0301-4622(96)02195-3. [DOI] [PubMed] [Google Scholar]
  4. Cortassa S., Aon M. A., Westerhoff H. V. Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys J. 1991 Oct;60(4):794–803. doi: 10.1016/S0006-3495(91)82114-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghosh A. K., Chance B., Pye E. K. Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch Biochem Biophys. 1971 Jul;145(1):319–331. doi: 10.1016/0003-9861(71)90042-7. [DOI] [PubMed] [Google Scholar]
  6. Goldbeter A., Lefever R. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J. 1972 Oct;12(10):1302–1315. doi: 10.1016/S0006-3495(72)86164-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
  8. Hess B., Boiteux A. Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe Seylers Z Physiol Chem. 1968 Nov;349(11):1567–1574. doi: 10.1515/bchm2.1968.349.2.1567. [DOI] [PubMed] [Google Scholar]
  9. Hess B., Mikhailov A. Self-organization in living cells. Science. 1994 Apr 8;264(5156):223–224. doi: 10.1126/science.8146651. [DOI] [PubMed] [Google Scholar]
  10. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  11. Kamp F., Astumian R. D., Westerhoff H. V. Coupling of vectorial proton flow to a biochemical reaction by local electric interactions. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3792–3796. doi: 10.1073/pnas.85.11.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keulers M., Suzuki T., Satroutdinov A. D., Kuriyama H. Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol Lett. 1996 Sep 1;142(2-3):253–258. doi: 10.1111/j.1574-6968.1996.tb08439.x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Martinez de la Fuente I., Martinez L., Veguillas J. Dynamic behavior in glycolytic oscillations with phase shifts. Biosystems. 1995;35(1):1–13. doi: 10.1016/0303-2647(94)01473-k. [DOI] [PubMed] [Google Scholar]
  15. Richard P., Bakker B. M., Teusink B., Van Dam K., Westerhoff H. V. Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem. 1996 Jan 15;235(1-2):238–241. doi: 10.1111/j.1432-1033.1996.00238.x. [DOI] [PubMed] [Google Scholar]
  16. Richard P., Diderich J. A., Bakker B. M., Teusink B., van Dam K., Westerhoff H. V. Yeast cells with a specific cellular make-up and an environment that removes acetaldehyde are prone to sustained glycolytic oscillations. FEBS Lett. 1994 Mar 21;341(2-3):223–226. doi: 10.1016/0014-5793(94)80461-3. [DOI] [PubMed] [Google Scholar]
  17. Richard P., Teusink B., Hemker M. B., Van Dam K., Westerhoff H. V. Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast. 1996 Jun 30;12(8):731–740. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C731::AID-YEA961%3E3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  18. Richard P., Teusink B., Westerhoff H. V., van Dam K. Around the growth phase transition S. cerevisiae's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 1993 Feb 22;318(1):80–82. doi: 10.1016/0014-5793(93)81332-t. [DOI] [PubMed] [Google Scholar]
  19. Richter O., Betz A., Giersch C. The response of oscillating glycolysis to perturbations in the NADH/NAD system: a comparison between experiments and a computer model. Biosystems. 1975 Jul;7(1):137–146. doi: 10.1016/0303-2647(75)90051-9. [DOI] [PubMed] [Google Scholar]
  20. Sel'kov E. E. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur J Biochem. 1975 Nov 1;59(1):151–157. doi: 10.1111/j.1432-1033.1975.tb02436.x. [DOI] [PubMed] [Google Scholar]
  21. Termonia Y., Ross J. Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc Natl Acad Sci U S A. 1981 May;78(5):2952–2956. doi: 10.1073/pnas.78.5.2952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Teusink B., Bakker B. M., Westerhoff H. V. Control of frequency and amplitudes is shared by all enzymes in three models for yeast glycolytic oscillations. Biochim Biophys Acta. 1996 Jul 31;1275(3):204–212. doi: 10.1016/0005-2728(96)00026-6. [DOI] [PubMed] [Google Scholar]
  23. Teusink B., Larsson C., Diderich J., Richard P., van Dam K., Gustafsson L., Westerhoff H. V. Synchronized heat flux oscillations in yeast cell populations. J Biol Chem. 1996 Oct 4;271(40):24442–24448. doi: 10.1074/jbc.271.40.24442. [DOI] [PubMed] [Google Scholar]
  24. Westerhoff H. V., Tsong T. Y., Chock P. B., Chen Y. D., Astumian R. D. How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4734–4738. doi: 10.1073/pnas.83.13.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolf J., Heinrich R. Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems. 1997;43(1):1–24. doi: 10.1016/s0303-2647(97)01688-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES