Abstract
In a model of a single synapse with a circular contact zone and a single concentric zone containing receptor-gated channels, we studied the dependence of the synaptic current on the synaptic cleft width and on the relative size of the receptor zone. During synaptic excitation, the extracellular current entered the cleft and flowed into the postsynaptic cell through receptor channels distributed homogeneously over the receptor zone. The membrane potential and channel currents were smaller toward the cleft center if compared to the cleft edges. This radial gradient was due to the voltage drop produced by the synaptic current on the cleft resistance. The total synaptic current conducted by the same number of open channels was sensitive to changes in the receptor zone radius and the cleft width. We conclude that synaptic geometry may affect synaptic currents by defining the volume resistor of the cleft. The in-series connection of the resistances of the intracleft medium and the receptor channels plays the role of the synaptic voltage divider. This voltage dividing effect should be taken into account when the conductance of single channels or synaptic contacts is estimated from experimental measurements of voltage-current relationships.
Full Text
The Full Text of this article is available as a PDF (79.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D., Iles J. F. Synaptic transmission: ion concentration changes in the synaptic cleft. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1162):115–131. doi: 10.1098/rspb.1979.0095. [DOI] [PubMed] [Google Scholar]
- Burns M. E., Augustine G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell. 1995 Oct 20;83(2):187–194. doi: 10.1016/0092-8674(95)90160-4. [DOI] [PubMed] [Google Scholar]
- Chen D. H. Qualitative and quantitative study of synaptic displacement in chromatolyzed spinal motoneurons of the cat. J Comp Neurol. 1978 Feb 15;177(4):635–664. doi: 10.1002/cne.901770407. [DOI] [PubMed] [Google Scholar]
- Clements J. D., Lester R. A., Tong G., Jahr C. E., Westbrook G. L. The time course of glutamate in the synaptic cleft. Science. 1992 Nov 27;258(5087):1498–1501. doi: 10.1126/science.1359647. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., JAEGER J. C. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):38–56. doi: 10.1098/rspb.1958.0003. [DOI] [PubMed] [Google Scholar]
- Faber D. S., Young W. S., Legendre P., Korn H. Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. Science. 1992 Nov 27;258(5087):1494–1498. doi: 10.1126/science.1279813. [DOI] [PubMed] [Google Scholar]
- Geinisman Y., deToledo-Morrell L., Morrell F., Heller R. E., Rossi M., Parshall R. F. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus. 1993 Oct;3(4):435–445. doi: 10.1002/hipo.450030405. [DOI] [PubMed] [Google Scholar]
- Harris K. M., Landis D. M. Membrane structure at synaptic junctions in area CA1 of the rat hippocampus. Neuroscience. 1986 Nov;19(3):857–872. doi: 10.1016/0306-4522(86)90304-0. [DOI] [PubMed] [Google Scholar]
- Jonas P., Major G., Sakmann B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol. 1993 Dec;472:615–663. doi: 10.1113/jphysiol.1993.sp019965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P. T., McGuinness T. L., Greengard P. Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1984 Feb;81(3):945–949. doi: 10.1073/pnas.81.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy M. B., Bennett M. K., Bulleit R. F., Erondu N. E., Jennings V. R., Miller S. G., Molloy S. S., Patton B. L., Schenker L. J. Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol. 1990;55:101–110. doi: 10.1101/sqb.1990.055.01.013. [DOI] [PubMed] [Google Scholar]
- Khanin R., Segel L., Parnas H., Ratner E. Neurotransmitter discharge and postsynaptic rise times. Biophys J. 1996 Apr;70(4):2030–2032. doi: 10.1016/S0006-3495(96)79769-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinle J., Vogt K., Lüscher H. R., Müller L., Senn W., Wyler K., Streit J. Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion. Biophys J. 1996 Nov;71(5):2413–2426. doi: 10.1016/S0006-3495(96)79435-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn H., Faber D. S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 1991 Oct;14(10):439–445. doi: 10.1016/0166-2236(91)90042-s. [DOI] [PubMed] [Google Scholar]
- Li C. L., Bak A. F., Parker L. O. Specific resistivity of the cerebral cortex and white matter. Exp Neurol. 1968 Apr;20(4):544–557. doi: 10.1016/0014-4886(68)90108-8. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Harris K. M. Quantal analysis and synaptic anatomy--integrating two views of hippocampal plasticity. Trends Neurosci. 1993 Apr;16(4):141–147. doi: 10.1016/0166-2236(93)90122-3. [DOI] [PubMed] [Google Scholar]
- RANCK J. B., Jr Specific impedance of rabbit cerebral cortex. Exp Neurol. 1963 Feb;7:144–152. doi: 10.1016/s0014-4886(63)80005-9. [DOI] [PubMed] [Google Scholar]
- Ranck J. B., Jr Electrical impedance in the subicular area of rats during paradoxical sleep. Exp Neurol. 1966 Dec;16(4):416–437. doi: 10.1016/0014-4886(66)90107-5. [DOI] [PubMed] [Google Scholar]
- Rusakov D. A., Kullmann D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci. 1998 May 1;18(9):3158–3170. doi: 10.1523/JNEUROSCI.18-09-03158.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusakov D. A., Kullmann D. M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8975–8980. doi: 10.1073/pnas.95.15.8975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert D. The possible role of adhesion in synaptic modification. Trends Neurosci. 1991 Apr;14(4):127–130. doi: 10.1016/0166-2236(91)90078-9. [DOI] [PubMed] [Google Scholar]
- Sheppard A., Wu J., Rutishauser U., Lynch G. Proteolytic modification of neural cell adhesion molecule (NCAM) by the intracellular proteinase calpain. Biochim Biophys Acta. 1991 Jan 8;1076(1):156–160. doi: 10.1016/0167-4838(91)90234-q. [DOI] [PubMed] [Google Scholar]
- Siekevitz P. The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc Natl Acad Sci U S A. 1985 May;82(10):3494–3498. doi: 10.1073/pnas.82.10.3494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorra K. E., Harris K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J Neurosci. 1993 Sep;13(9):3736–3748. doi: 10.1523/JNEUROSCI.13-09-03736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub R. D., Dudek F. E., Taylor C. P., Knowles W. D. Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience. 1985 Apr;14(4):1033–1038. doi: 10.1016/0306-4522(85)90274-x. [DOI] [PubMed] [Google Scholar]
- Traynelis S. F., Silver R. A., Cull-Candy S. G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron. 1993 Aug;11(2):279–289. doi: 10.1016/0896-6273(93)90184-s. [DOI] [PubMed] [Google Scholar]
- Uteshev V. V., Pennefather P. S. A mathematical description of miniature postsynaptic current generation at central nervous system synapses. Biophys J. 1996 Sep;71(3):1256–1266. doi: 10.1016/S0006-3495(96)79325-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigmond E. J., Perez Velazquez J. L., Valiante T. A., Bardakjian B. L., Carlen P. L. Mechanisms of electrical coupling between pyramidal cells. J Neurophysiol. 1997 Dec;78(6):3107–3116. doi: 10.1152/jn.1997.78.6.3107. [DOI] [PubMed] [Google Scholar]