Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1145–1153. doi: 10.1016/S0006-3495(00)76672-0

Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations.

J Wolf 1, J Passarge 1, O J Somsen 1, J L Snoep 1, R Heinrich 1, H V Westerhoff 1
PMCID: PMC1300717  PMID: 10692304

Abstract

Under certain well-defined conditions, a population of yeast cells exhibits glycolytic oscillations that synchronize through intercellular acetaldehyde. This implies that the dynamic phenomenon of the oscillation propagates within and between cells. We here develop a method to establish by which route dynamics propagate through a biological reaction network. Application of the method to yeast demonstrates how the oscillations and the synchronization signal can be transduced. That transduction is not so much through the backbone of glycolysis, as via the Gibbs energy and redox coenzyme couples (ATP/ADP, and NADH/NAD), and via both intra- and intercellular acetaldehyde.

Full Text

The Full Text of this article is available as a PDF (99.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
  2. Bier M., Teusink B., Kholodenko B. N., Westerhoff H. V. Control analysis of glycolytic oscillations. Biophys Chem. 1996 Nov 29;62(1-3):15–24. doi: 10.1016/s0301-4622(96)02195-3. [DOI] [PubMed] [Google Scholar]
  3. Byers L. D. Glyceraldehyde-3-phosphate dehydrogenase from yeast. Methods Enzymol. 1982;89(Pt 500):326–335. doi: 10.1016/s0076-6879(82)89059-9. [DOI] [PubMed] [Google Scholar]
  4. DUYSENS L. N., AMESZ J. Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta. 1957 Apr;24(1):19–26. doi: 10.1016/0006-3002(57)90141-5. [DOI] [PubMed] [Google Scholar]
  5. Heinrich R., Rapoport T. A. Mathematical analysis of multienzyme systems. II. Steady state and transient control. Biosystems. 1975 Jul;7(1):130–136. doi: 10.1016/0303-2647(75)90050-7. [DOI] [PubMed] [Google Scholar]
  6. Höfer T. Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys J. 1999 Sep;77(3):1244–1256. doi: 10.1016/S0006-3495(99)76976-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jensen P. R., Snoep J. L., Molenaar D., van Heeswijk W. C., Kholodenko B. N., van der Gugten A. A., Westerhoff H. V. Molecular biology for flux control. Biochem Soc Trans. 1995 May;23(2):367–370. doi: 10.1042/bst0230367. [DOI] [PubMed] [Google Scholar]
  8. Kahn D., Westerhoff H. V. The regulatory strength: how to be precise about regulation and homeostasis. Acta Biotheor. 1993 Jun;41(1-2):85–96. doi: 10.1007/BF00712777. [DOI] [PubMed] [Google Scholar]
  9. Markus M., Kuschmitz D., Hess B. Chaotic dynamics in yeast glycolysis under periodic substrate input flux. FEBS Lett. 1984 Jul 9;172(2):235–238. doi: 10.1016/0014-5793(84)81132-1. [DOI] [PubMed] [Google Scholar]
  10. Richard P., Bakker B. M., Teusink B., Van Dam K., Westerhoff H. V. Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem. 1996 Jan 15;235(1-2):238–241. doi: 10.1111/j.1432-1033.1996.00238.x. [DOI] [PubMed] [Google Scholar]
  11. Richard P., Diderich J. A., Bakker B. M., Teusink B., van Dam K., Westerhoff H. V. Yeast cells with a specific cellular make-up and an environment that removes acetaldehyde are prone to sustained glycolytic oscillations. FEBS Lett. 1994 Mar 21;341(2-3):223–226. doi: 10.1016/0014-5793(94)80461-3. [DOI] [PubMed] [Google Scholar]
  12. Richard P., Teusink B., Hemker M. B., Van Dam K., Westerhoff H. V. Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast. 1996 Jun 30;12(8):731–740. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C731::AID-YEA961%3E3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  13. Richard P., Teusink B., Westerhoff H. V., van Dam K. Around the growth phase transition S. cerevisiae's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 1993 Feb 22;318(1):80–82. doi: 10.1016/0014-5793(93)81332-t. [DOI] [PubMed] [Google Scholar]
  14. Sel'kov E. E. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur J Biochem. 1975 Nov 1;59(1):151–157. doi: 10.1111/j.1432-1033.1975.tb02436.x. [DOI] [PubMed] [Google Scholar]
  15. Termonia Y., Ross J. Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc Natl Acad Sci U S A. 1981 May;78(5):2952–2956. doi: 10.1073/pnas.78.5.2952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Teusink B., Bakker B. M., Westerhoff H. V. Control of frequency and amplitudes is shared by all enzymes in three models for yeast glycolytic oscillations. Biochim Biophys Acta. 1996 Jul 31;1275(3):204–212. doi: 10.1016/0005-2728(96)00026-6. [DOI] [PubMed] [Google Scholar]
  17. Wolf J., Heinrich R. Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems. 1997;43(1):1–24. doi: 10.1016/s0303-2647(97)01688-2. [DOI] [PubMed] [Google Scholar]
  18. Wolf J., Heinrich R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem J. 2000 Jan 15;345(Pt 2):321–334. [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES