Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1195–1206. doi: 10.1016/S0006-3495(00)76677-X

Time and force dependence of the rupture of glycoprotein IIb-IIIa-fibrinogen bonds between latex spheres.

H L Goldsmith 1, F A McIntosh 1, J Shahin 1, M M Frojmovic 1
PMCID: PMC1300722  PMID: 10692309

Abstract

We studied the shear-induced breakup of doublets of aldehyde/sulfate (A/S) latex spheres covalently linked with purified platelet GPIIb-IIIa receptor, and cross-linked by fibrinogen. Flow cytometry with fluorescein isothiocyanate-fibrinogen showed than an average of 22,500 molecules of active GPIIb-IIIa were captured per sphere, with a mean K(d) = 56 nM for fibrinogen binding. The spheres, suspended in buffered 19% Ficoll 400 containing 120 or 240 pM fibrinogen, were subjected to Couette flow in a counter-rotating cone-plate rheoscope. Doublets, formed by two-body collisions at low shear rate (G = 8 s(-1)) for < or =15 min, were subjected to shear stress from 0.6 to 2.9 Nm(-2), their rotations recorded until they broke up or were lost to view. Although breakup was time dependent, occurring mostly in the first 2 rotations after the onset of shear, the percentage of doublets broken up after 10 rotations were almost independent of normal hydrodynamic force, F(n): at 240 pN, 15.6, 16.0, and 17.0% broke up in the force range 70-150 pN, 150-230 pN, and 230-310 pN. Unexpectedly, at both [fibrinogen], the initial rate of breakup was highest in the lowest force range, and computer simulation using a stochastic model of breakup was unable to simulate the time course of breakup. When pre-sheared at low G for >15 min, no doublets broke up within 10 rotations at 70 < F(n) < 310 pN; it required >3 min shear (>1110 rotations) at F(n) = 210 pN for significant breakup to occur. Other published work has shown that binding of fibrinogen to GPIIb-IIIa immobilized on plane surfaces exhibits an initial fast reversible process with relative low affinity succeeded by transformation of GPIIb-IIIa to a stable high-affinity complex. We postulate that most doublet breakups observed within 10 rotations were from a population of young doublets having low numbers of bonds, by dissociation of the initial receptor complex relatively unresponsive to force. The remaining, older doublets with GPIIb-IIIa in the high-affinity complex were not broken up in the time or range of forces studied.

Full Text

The Full Text of this article is available as a PDF (136.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almagor A., Yedgar S., Gavish B. Viscous cosolvent effect on the ultrasonic absorption of bovine serum albumin. Biophys J. 1992 Feb;61(2):480–486. doi: 10.1016/S0006-3495(92)81852-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell D. N., Spain S., Goldsmith H. L. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Biophys J. 1989 Nov;56(5):829–843. doi: 10.1016/S0006-3495(89)82729-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  4. Bennett J. S., Vilaire G., Cines D. B. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling. J Biol Chem. 1982 Jul 25;257(14):8049–8054. [PubMed] [Google Scholar]
  5. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  6. Di Minno G., Thiagarajan P., Perussia B., Martinez J., Shapiro S., Trinchieri G., Murphy S. Exposure of platelet fibrinogen-binding sites by collagen, arachidonic acid, and ADP: inhibition by a monoclonal antibody to the glycoprotein IIb-IIIa complex. Blood. 1983 Jan;61(1):140–148. [PubMed] [Google Scholar]
  7. Du X., Gu M., Weisel J. W., Nagaswami C., Bennett J. S., Bowditch R., Ginsberg M. H. Long range propagation of conformational changes in integrin alpha IIb beta 3. J Biol Chem. 1993 Nov 5;268(31):23087–23092. [PubMed] [Google Scholar]
  8. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farrell D. H., Thiagarajan P., Chung D. W., Davie E. W. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10729–10732. doi: 10.1073/pnas.89.22.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frelinger A. L., 3rd, Lam S. C., Plow E. F., Smith M. A., Loftus J. C., Ginsberg M. H. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem. 1988 Sep 5;263(25):12397–12402. [PubMed] [Google Scholar]
  11. Frojmovic M. M., Kasirer-Friede A., Goldsmith H. L., Brown E. A. Surface-secreted von Willebrand factor mediates aggregation of ADP-activated platelets at moderate shear stress: facilitated by GPIb but controlled by GPIIb-IIIa. Thromb Haemost. 1997 Mar;77(3):568–576. [PubMed] [Google Scholar]
  12. Frojmovic M., Wong T., van de Ven T. Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J. 1991 Apr;59(4):815–827. doi: 10.1016/S0006-3495(91)82294-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujimoto T., Ohara S., Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest. 1982 Jun;69(6):1212–1222. doi: 10.1172/JCI110560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldsmith H. L., Frojmovic M. M., Braovac S., McIntosh F., Wong T. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects. Thromb Haemost. 1994 Jan;71(1):78–90. [PubMed] [Google Scholar]
  15. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hawiger J. Adhesive ends of fibrinogen and its antiadhesive peptides: the end of a saga? Semin Hematol. 1995 Apr;32(2):99–109. [PubMed] [Google Scholar]
  17. Huber W., Hurst J., Schlatter D., Barner R., Hübscher J., Kouns W. C., Steiner B. Determination of kinetic constants for the interaction between the platelet glycoprotein IIb-IIIa and fibrinogen by means of surface plasmon resonance. Eur J Biochem. 1995 Feb 1;227(3):647–656. doi: 10.1111/j.1432-1033.1995.tb20184.x. [DOI] [PubMed] [Google Scholar]
  18. Ikeda Y., Handa M., Kamata T., Kawano K., Kawai Y., Watanabe K., Kawakami K., Sakai K., Fukuyama M., Itagaki I. Transmembrane calcium influx associated with von Willebrand factor binding to GP Ib in the initiation of shear-induced platelet aggregation. Thromb Haemost. 1993 May 3;69(5):496–502. [PubMed] [Google Scholar]
  19. Ikeda Y., Handa M., Kawano K., Kamata T., Murata M., Araki Y., Anbo H., Kawai Y., Watanabe K., Itagaki I. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991 Apr;87(4):1234–1240. doi: 10.1172/JCI115124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Illum L., Jones P. D. Attachment of monoclonal antibodies to microspheres. Methods Enzymol. 1985;112:67–84. doi: 10.1016/s0076-6879(85)12008-2. [DOI] [PubMed] [Google Scholar]
  21. Jennings L. K., Phillips D. R. Purification of glycoproteins IIb and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein IIb-III complex. J Biol Chem. 1982 Sep 10;257(17):10458–10466. [PubMed] [Google Scholar]
  22. Karino T., Goldsmith H. L. Aggregation of human platelets in an annular vortex distal to a tubular expansion. Microvasc Res. 1979 May;17(3 Pt 1):217–237. doi: 10.1016/s0026-2862(79)80001-1. [DOI] [PubMed] [Google Scholar]
  23. Kornecki E., Niewiarowski S., Morinelli T. A., Kloczewiak M. Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann's thrombasthenic platelets. J Biol Chem. 1981 Jun 10;256(11):5696–5701. [PubMed] [Google Scholar]
  24. Kwong D., Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. II. Protein-protein bond. Biophys J. 1996 Aug;71(2):1115–1122. doi: 10.1016/S0006-3495(96)79313-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lawrie J. S., Ross J., Kemp G. D. Purification of fibrinogen and the separation of its degradation products in the presence of calcium ions [proceedings]. Biochem Soc Trans. 1979 Aug;7(4):693–694. doi: 10.1042/bst0070693. [DOI] [PubMed] [Google Scholar]
  26. Liu Q., Frojmovic M. M. The fibrinogen RIBS-I epitope (gamma373-385) appears proximate to the gamma408-411 adhesive domain but is not involved in interaction between receptor-bound or surface-adsorbed fibrinogen and platelet GPIIbIIIa. Biochim Biophys Acta. 1998 Dec 8;1429(1):217–229. doi: 10.1016/s0167-4838(98)00235-0. [DOI] [PubMed] [Google Scholar]
  27. Liu Q., Matsueda G., Brown E., Frojmovic M. The AGDV residues on the gamma chain carboxyl terminus of platelet-bound fibrinogen are needed for platelet aggregation. Biochim Biophys Acta. 1997 Dec 5;1343(2):316–326. doi: 10.1016/s0167-4838(97)00130-1. [DOI] [PubMed] [Google Scholar]
  28. Marguerie G. A., Edgington T. S., Plow E. F. Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem. 1980 Jan 10;255(1):154–161. [PubMed] [Google Scholar]
  29. Müller B., Zerwes H. G., Tangemann K., Peter J., Engel J. Two-step binding mechanism of fibrinogen to alpha IIb beta 3 integrin reconstituted into planar lipid bilayers. J Biol Chem. 1993 Mar 25;268(9):6800–6808. [PubMed] [Google Scholar]
  30. Peerschke E. I. Events occurring after thrombin-induced fibrinogen binding to platelets. Semin Thromb Hemost. 1992 Jan;18(1):34–43. doi: 10.1055/s-2007-1002408. [DOI] [PubMed] [Google Scholar]
  31. Peerschke E. I., Francis C. W., Marder V. J. Fibrinogen binding to human blood platelets: effect of gamma chain carboxyterminal structure and length. Blood. 1986 Feb;67(2):385–390. [PubMed] [Google Scholar]
  32. Peerschke E. I. Stabilization of platelet-fibrinogen interactions is an integral property of the glycoprotein IIb-IIIa complex. J Lab Clin Med. 1994 Sep;124(3):439–446. [PubMed] [Google Scholar]
  33. Plow E. F., Ginsberg M. H. Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. J Biol Chem. 1981 Sep 25;256(18):9477–9482. [PubMed] [Google Scholar]
  34. Rampling M. W. The solubility of fibrinogen in solutions containing dextrans of various molecular weights. Biochem J. 1974 Dec;143(3):767–769. doi: 10.1042/bj1430767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ramsamooj P., Doellgast G. J., Hantgan R. R. Inhibition of fibrin(ogen) binding to stimulated platelets by a monoclonal antibody specific for a conformational determinant of GPIIIa. Thromb Res. 1990 Jun 15;58(6):577–592. doi: 10.1016/0049-3848(90)90304-u. [DOI] [PubMed] [Google Scholar]
  36. Rembaum A., Margel S., Levy J. Polyglutaraldehyde: a new reagent for coupling proteins to microspheres and for labeling cell-surface receptors. J Immunol Methods. 1978;24(3-4):239–250. doi: 10.1016/0022-1759(78)90128-x. [DOI] [PubMed] [Google Scholar]
  37. Rooney M. M., Parise L. V., Lord S. T. Dissecting clot retraction and platelet aggregation. Clot retraction does not require an intact fibrinogen gamma chain C terminus. J Biol Chem. 1996 Apr 12;271(15):8553–8555. doi: 10.1074/jbc.271.15.8553. [DOI] [PubMed] [Google Scholar]
  38. Shattil S. J., Cunningham M., Hoxie J. A. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood. 1987 Jul;70(1):307–315. [PubMed] [Google Scholar]
  39. Sims P. J., Ginsberg M. H., Plow E. F., Shattil S. J. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem. 1991 Apr 25;266(12):7345–7352. [PubMed] [Google Scholar]
  40. Tees D. F., Coenen O., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Biophys J. 1993 Sep;65(3):1318–1334. doi: 10.1016/S0006-3495(93)81180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tees D. F., Goldsmith H. L. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Biophys J. 1996 Aug;71(2):1102–1114. doi: 10.1016/S0006-3495(96)79312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tha S. P., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. I. Theoretical. Biophys J. 1986 Dec;50(6):1109–1116. doi: 10.1016/S0006-3495(86)83555-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ugarova T. P., Budzynski A. Z., Shattil S. J., Ruggeri Z. M., Ginsberg M. H., Plow E. F. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem. 1993 Oct 5;268(28):21080–21087. [PubMed] [Google Scholar]
  44. Weisel J. W., Nagaswami C., Vilaire G., Bennett J. S. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem. 1992 Aug 15;267(23):16637–16643. [PubMed] [Google Scholar]
  45. Xia Z., Frojmovic M. M. Aggregation efficiency of activated normal or fixed platelets in a simple shear field: effect of shear and fibrinogen occupancy. Biophys J. 1994 Jun;66(6):2190–2201. doi: 10.1016/S0006-3495(94)81015-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xia Z., Wong T., Liu Q., Kasirer-Friede A., Brown E., Frojmovic M. M. Optimally functional fluorescein isothiocyanate-labelled fibrinogen for quantitative studies of binding to activated platelets and platelet aggregation. Br J Haematol. 1996 Apr;93(1):204–214. doi: 10.1046/j.1365-2141.1996.445980.x. [DOI] [PubMed] [Google Scholar]
  47. Zamarron C., Ginsberg M. H., Plow E. F. A receptor-induced binding site in fibrinogen elicited by its interaction with platelet membrane glycoprotein IIb-IIIa. J Biol Chem. 1991 Aug 25;266(24):16193–16199. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES