Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1282–1292. doi: 10.1016/S0006-3495(00)76684-7

Functional expression of the L-type calcium channel in mice skeletal muscle during prenatal myogenesis.

C Strube 1, Y Tourneur 1, C Ojeda 1
PMCID: PMC1300729  PMID: 10692316

Abstract

The densities of skeletal muscle intramembrane charge movement and macroscopic L-type Ca(2+) current have been shown to increase during prenatal development. In the present work, the electrophysiological characteristics of L-type Ca(2+) channels were analyzed over the embryonic period E14 to E19 using the whole-cell and cell-attached procedures. At the macroscopic level, the whole-cell L-type Ca(2+) conductance increased 100% between E14 and E19. This enhancement was accompanied by a small negative shift of the voltage dependence and a marked acceleration of the inactivation kinetics. At the single-channel level, the unitary conductance decreased significantly from 13.2 +/- 0.1 pS (n = 8) at E14 to 10.7 +/- 0.3 pS (n = 7) at E18 and the open probability was multiplied by 2. No significant change of the density of functional channels was observed during the same period. In contrast to the density of intramembrane charge movement, which, under the same conditions, has been shown to increase between 16 and 19 days, L-type Ca(2+) channels properties change mostly between 14 and 16 days. Taken together, these results suggest that the two functions of the dihydropyridine receptor are carried by two different proteins which could be differentially regulated by subunit composition and/or degree of phosphorylation.

Full Text

The Full Text of this article is available as a PDF (169.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. A., Tanabe T., Beam K. G. Ca2+ current activation rate correlates with alpha 1 subunit density. Biophys J. 1996 Jul;71(1):156–162. doi: 10.1016/S0006-3495(96)79212-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beam K. G., Knudson C. M. Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol. 1988 Jun;91(6):799–815. doi: 10.1085/jgp.91.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulteau L., Raymond G., Cognard C. Antisense oligonucleotides against 'cardiac' and 'skeletal' DHP-receptors reveal a dual role for the 'skeletal' isoform in EC coupling of skeletal muscle cells in primary culture. J Cell Sci. 1998 Aug;111(Pt 15):2149–2158. doi: 10.1242/jcs.111.15.2149. [DOI] [PubMed] [Google Scholar]
  5. Chaudhari N., Beam K. G. mRNA for cardiac calcium channel is expressed during development of skeletal muscle. Dev Biol. 1993 Feb;155(2):507–515. doi: 10.1006/dbio.1993.1048. [DOI] [PubMed] [Google Scholar]
  6. Delbono O., Renganathan M., Messi M. L. Regulation of mouse skeletal muscle L-type Ca2+ channel by activation of the insulin-like growth factor-1 receptor. J Neurosci. 1997 Sep 15;17(18):6918–6928. doi: 10.1523/JNEUROSCI.17-18-06918.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dirksen R. T., Beam K. G. Single calcium channel behavior in native skeletal muscle. J Gen Physiol. 1995 Feb;105(2):227–247. doi: 10.1085/jgp.105.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dirksen R. T., Beam K. G. Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes. J Gen Physiol. 1996 Jun;107(6):731–742. doi: 10.1085/jgp.107.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eberst R., Dai S., Klugbauer N., Hofmann F. Identification and functional characterization of a calcium channel gamma subunit. Pflugers Arch. 1997 Mar;433(5):633–637. doi: 10.1007/s004240050324. [DOI] [PubMed] [Google Scholar]
  10. Franzini-Armstrong C. Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol. 1991 Aug;146(2):353–363. doi: 10.1016/0012-1606(91)90237-w. [DOI] [PubMed] [Google Scholar]
  11. Gerster U., Neuhuber B., Groschner K., Striessnig J., Flucher B. E. Current modulation and membrane targeting of the calcium channel alpha1C subunit are independent functions of the beta subunit. J Physiol. 1999 Jun 1;517(Pt 2):353–368. doi: 10.1111/j.1469-7793.1999.0353t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hofmann F., Biel M., Flockerzi V. Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci. 1994;17:399–418. doi: 10.1146/annurev.ne.17.030194.002151. [DOI] [PubMed] [Google Scholar]
  14. Kazazoglou T., Schmid A., Renaud J. F., Lazdunski M. Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett. 1983 Nov 28;164(1):75–79. doi: 10.1016/0014-5793(83)80022-2. [DOI] [PubMed] [Google Scholar]
  15. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  16. Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986 May 22;321(6068):406–411. doi: 10.1038/321406a0. [DOI] [PubMed] [Google Scholar]
  17. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  18. O'Leary M. E., Chen L. Q., Kallen R. G., Horn R. A molecular link between activation and inactivation of sodium channels. J Gen Physiol. 1995 Oct;106(4):641–658. doi: 10.1085/jgp.106.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
  20. Schmid A., Renaud J. F., Fosset M., Meaux J. P., Lazdunski M. The nitrendipine-sensitive Ca2+ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo. J Biol Chem. 1984 Sep 25;259(18):11366–11372. [PubMed] [Google Scholar]
  21. Shimahara T., Bournaud R. Barium currents in developing skeletal muscle cells of normal and mutant mice foetuses with 'muscular dysgenesis'. Cell Calcium. 1991 Nov;12(10):727–733. doi: 10.1016/0143-4160(91)90041-c. [DOI] [PubMed] [Google Scholar]
  22. Shistik E., Ivanina T., Puri T., Hosey M., Dascal N. Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J Physiol. 1995 Nov 15;489(Pt 1):55–62. doi: 10.1113/jphysiol.1995.sp021029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singer D., Biel M., Lotan I., Flockerzi V., Hofmann F., Dascal N. The roles of the subunits in the function of the calcium channel. Science. 1991 Sep 27;253(5027):1553–1557. doi: 10.1126/science.1716787. [DOI] [PubMed] [Google Scholar]
  24. Strube C., Beurg M., Georgescauld D., Bournaud R., Shimahara T. Extracellular Ca(2+)-dependent and independent calcium transient in fetal myotubes. Pflugers Arch. 1994 Jul;427(5-6):517–523. doi: 10.1007/BF00374269. [DOI] [PubMed] [Google Scholar]
  25. Strube C., Beurg M., Powers P. A., Gregg R. G., Coronado R. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J. 1996 Nov;71(5):2531–2543. doi: 10.1016/S0006-3495(96)79446-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Strube C., Beurg M., Sukhareva M., Ahern C. A., Powell J. A., Powers P. A., Gregg R. G., Coronado R. Molecular origin of the L-type Ca2+ current of skeletal muscle myotubes selectively deficient in dihydropyridine receptor beta1a subunit. Biophys J. 1998 Jul;75(1):207–217. doi: 10.1016/S0006-3495(98)77507-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strube C., Bournaud R., Inoue I., Shimahara T. Intramembrane charge movement in developing skeletal muscle cells from fetal mice. Pflugers Arch. 1992 Sep;421(6):572–577. doi: 10.1007/BF00375053. [DOI] [PubMed] [Google Scholar]
  28. Tanabe T., Beam K. G., Powell J. A., Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134–139. doi: 10.1038/336134a0. [DOI] [PubMed] [Google Scholar]
  29. Tanabe T., Mikami A., Numa S., Beam K. G. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature. 1990 Mar 29;344(6265):451–453. doi: 10.1038/344451a0. [DOI] [PubMed] [Google Scholar]
  30. Varadi G., Lory P., Schultz D., Varadi M., Schwartz A. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature. 1991 Jul 11;352(6331):159–162. doi: 10.1038/352159a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES