Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1293–1305. doi: 10.1016/S0006-3495(00)76685-9

Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings.

J Xie 1, J Zhao 1, P B Davis 1, J Ma 1
PMCID: PMC1300730  PMID: 10692317

Abstract

The R domain of cystic fibrosis transmembrane conductance regulator (CFTR), when phosphorylated, undergoes conformational change, and the chloride channel opens. We investigated the contribution of R domain conformation, apart from the changes induced by phosphorylation, to channel opening, by testing the effect of the peptidyl-prolyl isomerase, cyclophilin A, on the CFTR channel. When it was applied after the channel had been opened by PKA phosphorylation, cyclophilin A increased the open probability of wild-type CFTR (from P(o) = 0.197 +/- 0.010 to P(o) = 0.436 +/- 0. 029) by increasing the number of channel openings, not open time. Three highly conserved proline residues in the R domain, at positions 740, 750, and 759, were considered as candidate targets for cyclophilin A. Mutations of these prolines to alanines (P3A mutant) resulted in a channel unresponsive to cyclophilin A but with pore properties similar to the wild type, under strict control of PKA and ATP, but with significantly increased open probability (P(o) = 0.577 +/- 0.090) compared to wild-type CFTR, again due to an increase in the number of channel openings and not open time. Mutation of each of the proline residues separately and in pairs demonstrated that all three proline mutations are required for maximal P(o). When P3A was expressed in 293 HEK cells and tested by SPQ assay, chloride efflux was significantly increased compared to cells transfected with wild-type CFTR. Thus, treatments favoring the trans-peptidyl conformation about conserved proline residues in the R domain of CFTR affect openings of CFTR, above and beyond the effect of PKA phosphorylation.

Full Text

The Full Text of this article is available as a PDF (443.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Generation of cAMP-activated chloride currents by expression of CFTR. Science. 1991 Feb 8;251(4994):679–682. doi: 10.1126/science.1704151. [DOI] [PubMed] [Google Scholar]
  2. Blömer U., Naldini L., Verma I. M., Trono D., Gage F. H. Applications of gene therapy to the CNS. Hum Mol Genet. 1996;5(Spec No):1397–1404. doi: 10.1093/hmg/5.supplement_1.1397. [DOI] [PubMed] [Google Scholar]
  3. Carson M. R., Travis S. M., Welsh M. J. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem. 1995 Jan 27;270(4):1711–1717. doi: 10.1074/jbc.270.4.1711. [DOI] [PubMed] [Google Scholar]
  4. Cheng S. H., Rich D. P., Marshall J., Gregory R. J., Welsh M. J., Smith A. E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991 Sep 6;66(5):1027–1036. doi: 10.1016/0092-8674(91)90446-6. [DOI] [PubMed] [Google Scholar]
  5. Cotten J. F., Welsh M. J. Covalent modification of the regulatory domain irreversibly stimulates cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1997 Oct 10;272(41):25617–25622. doi: 10.1074/jbc.272.41.25617. [DOI] [PubMed] [Google Scholar]
  6. Dulhanty A. M., Riordan J. R. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry. 1994 Apr 5;33(13):4072–4079. doi: 10.1021/bi00179a036. [DOI] [PubMed] [Google Scholar]
  7. Fischer H., Illek B., Machen T. E. Regulation of CFTR by protein phosphatase 2B and protein kinase C. Pflugers Arch. 1998 Jul;436(2):175–181. doi: 10.1007/s004240050620. [DOI] [PubMed] [Google Scholar]
  8. Gadsby D. C., Nairn A. C. Regulation of CFTR channel gating. Trends Biochem Sci. 1994 Nov;19(11):513–518. doi: 10.1016/0968-0004(94)90141-4. [DOI] [PubMed] [Google Scholar]
  9. Grubb B. R., Pickles R. J., Ye H., Yankaskas J. R., Vick R. N., Engelhardt J. F., Wilson J. M., Johnson L. G., Boucher R. C. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature. 1994 Oct 27;371(6500):802–806. doi: 10.1038/371802a0. [DOI] [PubMed] [Google Scholar]
  10. Harrison R. K., Stein R. L. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry. 1990 Apr 24;29(16):3813–3816. doi: 10.1021/bi00468a001. [DOI] [PubMed] [Google Scholar]
  11. Ma J., Davis P. B. What we know and what we do not know about cystic fibrosis transmembrane conductance regulator. Clin Chest Med. 1998 Sep;19(3):459-71, v-vi. doi: 10.1016/s0272-5231(05)70093-9. [DOI] [PubMed] [Google Scholar]
  12. Ma J., Tasch J. E., Tao T., Zhao J., Xie J., Drumm M. L., Davis P. B. Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein. J Biol Chem. 1996 Mar 29;271(13):7351–7356. doi: 10.1074/jbc.271.13.7351. [DOI] [PubMed] [Google Scholar]
  13. Ma J., Zhao J., Drumm M. L., Xie J., Davis P. B. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem. 1997 Oct 31;272(44):28133–28141. doi: 10.1074/jbc.272.44.28133. [DOI] [PubMed] [Google Scholar]
  14. Picciotto M. R., Cohn J. A., Bertuzzi G., Greengard P., Nairn A. C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Jun 25;267(18):12742–12752. [PubMed] [Google Scholar]
  15. Rich D. P., Berger H. A., Cheng S. H., Travis S. M., Saxena M., Smith A. E., Welsh M. J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem. 1993 Sep 25;268(27):20259–20267. [PubMed] [Google Scholar]
  16. Rich D. P., Gregory R. J., Anderson M. P., Manavalan P., Smith A. E., Welsh M. J. Effect of deleting the R domain on CFTR-generated chloride channels. Science. 1991 Jul 12;253(5016):205–207. doi: 10.1126/science.1712985. [DOI] [PubMed] [Google Scholar]
  17. Rich D. P., Gregory R. J., Cheng S. H., Smith A. E., Welsh M. J. Effect of deletion mutations on the function of CFTR chloride channels. Receptors Channels. 1993;1(3):221–232. [PubMed] [Google Scholar]
  18. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  19. Rosenfeld M. A., Rosenfeld S. J., Danel C., Banks T. C., Crystal R. G. Increasing expression of the normal human CFTR cDNA in cystic fibrosis epithelial cells results in a progressive increase in the level of CFTR protein expression, but a limit on the level of cAMP-stimulated chloride secretion. Hum Gene Ther. 1994 Sep;5(9):1121–1129. doi: 10.1089/hum.1994.5.9-1121. [DOI] [PubMed] [Google Scholar]
  20. Seibert F. S., Linsdell P., Loo T. W., Hanrahan J. W., Riordan J. R., Clarke D. M. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J Biol Chem. 1996 Nov 1;271(44):27493–27499. doi: 10.1074/jbc.271.44.27493. [DOI] [PubMed] [Google Scholar]
  21. Sheppard D. N., Ostedgaard L. S., Rich D. P., Welsh M. J. The amino-terminal portion of CFTR forms a regulated Cl- channel. Cell. 1994 Mar 25;76(6):1091–1098. doi: 10.1016/0092-8674(94)90385-9. [DOI] [PubMed] [Google Scholar]
  22. Sheppard D. N., Ostedgaard L. S., Winter M. C., Welsh M. J. Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency. EMBO J. 1995 Mar 1;14(5):876–883. doi: 10.1002/j.1460-2075.1995.tb07069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sheppard D. N., Travis S. M., Ishihara H., Welsh M. J. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem. 1996 Jun 21;271(25):14995–15001. doi: 10.1074/jbc.271.25.14995. [DOI] [PubMed] [Google Scholar]
  24. Verma I. M., Somia N. Gene therapy -- promises, problems and prospects. Nature. 1997 Sep 18;389(6648):239–242. doi: 10.1038/38410. [DOI] [PubMed] [Google Scholar]
  25. Winter M. C., Welsh M. J. Stimulation of CFTR activity by its phosphorylated R domain. Nature. 1997 Sep 18;389(6648):294–296. doi: 10.1038/38514. [DOI] [PubMed] [Google Scholar]
  26. Xie J., Drumm M. L., Ma J., Davis P. B. Intracellular loop between transmembrane segments IV and V of cystic fibrosis transmembrane conductance regulator is involved in regulation of chloride channel conductance state. J Biol Chem. 1995 Nov 24;270(47):28084–28091. doi: 10.1074/jbc.270.47.28084. [DOI] [PubMed] [Google Scholar]
  27. Xie J., Drumm M. L., Zhao J., Ma J., Davis P. B. Human epithelial cystic fibrosis transmembrane conductance regulator without exon 5 maintains partial chloride channel function in intracellular membranes. Biophys J. 1996 Dec;71(6):3148–3156. doi: 10.1016/S0006-3495(96)79508-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES