Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1420–1430. doi: 10.1016/S0006-3495(00)76695-1

Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: interaction of dipalmitoyl N-poly(ethylene glycol)phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spin-label electron spin resonance.

S Belsito 1, R Bartucci 1, G Montesano 1, D Marsh 1, L Sportelli 1
PMCID: PMC1300740  PMID: 10692327

Abstract

Spin-label electron spin resonance (ESR) spectroscopy, together with optical density measurements, has been used to investigate, at both the molecular and supramolecular levels, the interactions of N-poly(ethylene glycol)-phosphatidylethanolamines (PEG-PE) with phosphatidylcholine (PC) in aqueous dispersions. PEG-PEs are micelle-forming hydrophilic polymer-grafted lipids that are used extensively for steric stabilization of PC liposomes to increase their lifetimes in the blood circulation. All lipids had dipalmitoyl (C16:0) chains, and the polymer polar group of the PEG-PE lipids had a mean molecular mass of either 350 or 2000 Da. PC/PEG-PE mixtures were investigated over the entire range of relative compositions. Spin-label ESR was used quantitatively to investigate bilayer-micelle conversion with increasing PEG-PE content by measurements at temperatures for which the bilayer membrane component of the mixture was in the gel phase. Both saturation transfer ESR and optical density measurements were used to obtain information on the dependence of lipid aggregate size on PEG-PE content. It is found that the stable state of lipid aggregation is strongly dependent not only on PEG-PE content but also on the size of the hydrophilic polar group. These biophysical properties may be used for optimized design of sterically stabilized liposomes.

Full Text

The Full Text of this article is available as a PDF (139.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Hansen C., Martin F., Redemann C., Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991 Jul 1;1066(1):29–36. doi: 10.1016/0005-2736(91)90246-5. [DOI] [PubMed] [Google Scholar]
  2. Baekmark T. R., Pedersen S., Jørgensen K., Mouritsen O. G. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine. Biophys J. 1997 Sep;73(3):1479–1491. doi: 10.1016/S0006-3495(97)78180-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartucci R., Páli T., Marsh D. Lipid chain motion in an interdigitated gel phase: conventional and saturation transfer ESR of spin-labeled lipids in dipalmitoylphosphatidylcholine-glycerol dispersions. Biochemistry. 1993 Jan 12;32(1):274–281. doi: 10.1021/bi00052a035. [DOI] [PubMed] [Google Scholar]
  4. Bedu-Addo F. K., Tang P., Xu Y., Huang L. Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharm Res. 1996 May;13(5):710–717. doi: 10.1023/a:1016091314940. [DOI] [PubMed] [Google Scholar]
  5. Belsito S., Bartucci R., Sportelli L. Sterically stabilized liposomes of DPPC/DPPE-PEG:2000. A spin label ESR and spectrophotometric study. Biophys Chem. 1998 Oct 5;75(1):33–43. doi: 10.1016/s0301-4622(98)00187-2. [DOI] [PubMed] [Google Scholar]
  6. Blume G., Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990 Nov 2;1029(1):91–97. doi: 10.1016/0005-2736(90)90440-y. [DOI] [PubMed] [Google Scholar]
  7. Blume G., Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta. 1993 Mar 14;1146(2):157–168. doi: 10.1016/0005-2736(93)90351-y. [DOI] [PubMed] [Google Scholar]
  8. Edwards K., Johnsson M., Karlsson G., Silvander M. Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J. 1997 Jul;73(1):258–266. doi: 10.1016/S0006-3495(97)78066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kenworthy A. K., Simon S. A., McIntosh T. J. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1903–1920. doi: 10.1016/S0006-3495(95)80368-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klibanov A. L., Maruyama K., Torchilin V. P., Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990 Jul 30;268(1):235–237. doi: 10.1016/0014-5793(90)81016-h. [DOI] [PubMed] [Google Scholar]
  11. Lasic D. D., Martin F. J., Gabizon A., Huang S. K., Papahadjopoulos D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta. 1991 Nov 18;1070(1):187–192. doi: 10.1016/0005-2736(91)90162-2. [DOI] [PubMed] [Google Scholar]
  12. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marsh D. Electron spin resonance: spin labels. Mol Biol Biochem Biophys. 1981;31:51–142. doi: 10.1007/978-3-642-81537-9_2. [DOI] [PubMed] [Google Scholar]
  14. Marsh D. Molecular motion in phospholipid bilayers in the gel phase: long axis rotation. Biochemistry. 1980 Apr 15;19(8):1632–1637. doi: 10.1021/bi00549a017. [DOI] [PubMed] [Google Scholar]
  15. Marsh D. Spin-label electron spin resonance and Fourier transform infrared spectroscopy for structural/dynamic measurements on ion channels. Methods Enzymol. 1999;294:59–92. doi: 10.1016/s0076-6879(99)94007-7. [DOI] [PubMed] [Google Scholar]
  16. Papahadjopoulos D., Allen T. M., Gabizon A., Mayhew E., Matthay K., Huang S. K., Lee K. D., Woodle M. C., Lasic D. D., Redemann C. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11460–11464. doi: 10.1073/pnas.88.24.11460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Szleifer I., Gerasimov O. V., Thompson D. H. Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers: theoretical prediction and experimental verification. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1032–1037. doi: 10.1073/pnas.95.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Torchilin V. P., Omelyanenko V. G., Papisov M. I., Bogdanov A. A., Jr, Trubetskoy V. S., Herron J. N., Gentry C. A. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994 Oct 12;1195(1):11–20. doi: 10.1016/0005-2736(94)90003-5. [DOI] [PubMed] [Google Scholar]
  19. Tsuchida K., Hatta I. ESR studies on the ripple phase in multilamellar phospholipid bilayers. Biochim Biophys Acta. 1988 Nov 3;945(1):73–80. doi: 10.1016/0005-2736(88)90364-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES