Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1431–1440. doi: 10.1016/S0006-3495(00)76696-3

The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle.

J R Moore 1, M H Dickinson 1, J O Vigoreaux 1, D W Maughan 1
PMCID: PMC1300741  PMID: 10692328

Abstract

The Drosophila myosin regulatory light chain (DMLC2) is homologous to MLC2s of vertebrate organisms, except for the presence of a unique 46-amino acid N-terminal extension. To study the role of the DMLC2 N-terminal extension in Drosophila flight muscle, we constructed a truncated form of the Dmlc2 gene lacking amino acids 2-46 (Dmlc2(Delta2-46)). The mutant gene was expressed in vivo, with no wild-type Dmlc2 gene expression, via P-element-mediated germline transformation. Expression of the truncated DMLC2 rescues the recessive lethality and dominant flightless phenotype of the Dmlc2 null, with no discernible effect on indirect flight muscle (IFM) sarcomere assembly. Homozygous Dmlc2(Delta2-46) flies have reduced IFM dynamic stiffness and elastic modulus at the frequency of maximum power output. The viscous modulus, a measure of the fly's ability to perform oscillatory work, was not significantly affected in Dmlc2(Delta2-46) IFM. In vivo flight performance measurements of Dmlc2(Delta2-46) flies using a visual closed-loop flight arena show deficits in maximum metabolic power (P(*)(CO(2))), mechanical power (P(*)(mech)), and flight force. However, mutant flies were capable of generating flight force levels comparable to body weight, thus enabling them to fly, albeit with diminished performance. The reduction in elastic modulus in Dmlc2(Delta2-46) skinned fibers is consistent with the N-terminal extension being a link between the thick and thin filaments that is parallel to the cross-bridges. Removal of this parallel link causes an unfavorable shift in the resonant properties of the flight system, thus leading to attenuated flight performance.

Full Text

The Full Text of this article is available as a PDF (328.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson M., Drummond D. R., Geeves M. A., Hennessey E. S., Ritchie M. D., Sparrow J. C. Actomyosin kinetics and in vitro motility of wild-type Drosophila actin and the effects of two mutations in the Act88F gene. Biophys J. 1995 May;68(5):1991–2003. doi: 10.1016/S0006-3495(95)80376-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein S. I., O'Donnell P. T., Cripps R. M. Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol. 1993;143:63–152. doi: 10.1016/s0074-7696(08)61874-4. [DOI] [PubMed] [Google Scholar]
  3. Collins J. H. Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil. 1991 Feb;12(1):3–25. doi: 10.1007/BF01781170. [DOI] [PubMed] [Google Scholar]
  4. Dickinson M. H., Hyatt C. J., Lehmann F. O., Moore J. R., Reedy M. C., Simcox A., Tohtong R., Vigoreaux J. O., Yamashita H., Maughan D. W. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J. 1997 Dec;73(6):3122–3134. doi: 10.1016/S0006-3495(97)78338-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dickinson M. H., Lighton J. R. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science. 1995 Apr 7;268(5207):87–90. doi: 10.1126/science.7701346. [DOI] [PubMed] [Google Scholar]
  6. Drummond D. R., Peckham M., Sparrow J. C., White D. C. Alteration in crossbridge kinetics caused by mutations in actin. Nature. 1990 Nov 29;348(6300):440–442. doi: 10.1038/348440a0. [DOI] [PubMed] [Google Scholar]
  7. Granzier H. L., Wang K. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal. J Gen Physiol. 1993 Feb;101(2):235–270. doi: 10.1085/jgp.101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill T. L., Eisenberg E., Greene L. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3186–3190. doi: 10.1073/pnas.77.6.3186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hyatt C. J., Maughan D. W. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera. Biophys J. 1994 Sep;67(3):1149–1154. doi: 10.1016/S0006-3495(94)80582-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Josephson R. K. Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol. 1993;55:527–546. doi: 10.1146/annurev.ph.55.030193.002523. [DOI] [PubMed] [Google Scholar]
  11. Lehmann F. O., Dickinson M. H. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J Exp Biol. 1997 Apr;200(Pt 7):1133–1143. doi: 10.1242/jeb.200.7.1133. [DOI] [PubMed] [Google Scholar]
  12. Maughan David W., Vigoreaux Jim O. An Integrated View of Insect Flight Muscle: Genes, Motor Molecules, and Motion. News Physiol Sci. 1999 Jun;14(NaN):87–92. doi: 10.1152/physiologyonline.1999.14.3.87. [DOI] [PubMed] [Google Scholar]
  13. Metzger J. M., Greaser M. L., Moss R. L. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol. 1989 May;93(5):855–883. doi: 10.1085/jgp.93.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milligan R. A., Whittaker M., Safer D. Molecular structure of F-actin and location of surface binding sites. Nature. 1990 Nov 15;348(6298):217–221. doi: 10.1038/348217a0. [DOI] [PubMed] [Google Scholar]
  15. Millman B. M. The filament lattice of striated muscle. Physiol Rev. 1998 Apr;78(2):359–391. doi: 10.1152/physrev.1998.78.2.359. [DOI] [PubMed] [Google Scholar]
  16. Mogami K., Fujita S. C., Hotta Y. Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis. J Biochem. 1982 Feb;91(2):643–650. doi: 10.1093/oxfordjournals.jbchem.a133736. [DOI] [PubMed] [Google Scholar]
  17. Morano I., Ritter O., Bonz A., Timek T., Vahl C. F., Michel G. Myosin light chain-actin interaction regulates cardiac contractility. Circ Res. 1995 May;76(5):720–725. doi: 10.1161/01.res.76.5.720. [DOI] [PubMed] [Google Scholar]
  18. Morano M., Zacharzowski U., Maier M., Lange P. E., Alexi-Meskishvili V., Haase H., Morano I. Regulation of human heart contractility by essential myosin light chain isoforms. J Clin Invest. 1996 Jul 15;98(2):467–473. doi: 10.1172/JCI118813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parker V. P., Falkenthal S., Davidson N. Characterization of the myosin light-chain-2 gene of Drosophila melanogaster. Mol Cell Biol. 1985 Nov;5(11):3058–3068. doi: 10.1128/mcb.5.11.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Persechini A., Stull J. T., Cooke R. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem. 1985 Jul 5;260(13):7951–7954. [PubMed] [Google Scholar]
  21. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  22. Pringle J. W. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107–130. doi: 10.1098/rspb.1978.0035. [DOI] [PubMed] [Google Scholar]
  23. Rarick H. M., Opgenorth T. J., von Geldern T. W., Wu-Wong J. R., Solaro R. J. An essential myosin light chain peptide induces supramaximal stimulation of cardiac myofibrillar ATPase activity. J Biol Chem. 1996 Oct 25;271(43):27039–27043. doi: 10.1074/jbc.271.43.27039. [DOI] [PubMed] [Google Scholar]
  24. Reedy M. C., Reedy M. K., Leonard K. R., Bullard B. Gold/Fab immuno electron microscopy localization of troponin H and troponin T in Lethocerus flight muscle. J Mol Biol. 1994 May 27;239(1):52–67. doi: 10.1006/jmbi.1994.1350. [DOI] [PubMed] [Google Scholar]
  25. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  26. Schaub M. C., Hefti M. A., Zuellig R. A., Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res. 1998 Feb;37(2):381–404. doi: 10.1016/s0008-6363(97)00258-7. [DOI] [PubMed] [Google Scholar]
  27. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
  28. Sweeney H. L., Bowman B. F., Stull J. T. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993 May;264(5 Pt 1):C1085–C1095. doi: 10.1152/ajpcell.1993.264.5.C1085. [DOI] [PubMed] [Google Scholar]
  29. Sweeney H. L. Function of the N terminus of the myosin essential light chain of vertebrate striated muscle. Biophys J. 1995 Apr;68(4 Suppl):112S–119S. [PMC free article] [PubMed] [Google Scholar]
  30. Takano-Ohmuro H., Takahashi S., Hirose G., Maruyama K. Phosphorylated and dephosphorylated myosin light chains of Drosophila fly and larva. Comp Biochem Physiol B. 1990;95(1):171–177. doi: 10.1016/0305-0491(90)90266-v. [DOI] [PubMed] [Google Scholar]
  31. Thorson J., White D. C. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J Physiol. 1983 Oct;343:59–84. doi: 10.1113/jphysiol.1983.sp014881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Timson D. J., Trayer I. P. The rôle of the proline-rich region in A1-type myosin essential light chains: implications for information transmission in the actomyosin complex. FEBS Lett. 1997 Jan 2;400(1):31–36. doi: 10.1016/s0014-5793(96)01314-2. [DOI] [PubMed] [Google Scholar]
  33. Toffenetti J., Mischke D., Pardue M. L. Isolation and characterization of the gene for myosin light chain two of Drosophila melanogaster. J Cell Biol. 1987 Jan;104(1):19–28. doi: 10.1083/jcb.104.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tohtong R., Yamashita H., Graham M., Haeberle J., Simcox A., Maughan D. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature. 1995 Apr 13;374(6523):650–653. doi: 10.1038/374650a0. [DOI] [PubMed] [Google Scholar]
  35. Trayer I. P., Trayer H. R., Levine B. A. Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study. Eur J Biochem. 1987 Apr 1;164(1):259–266. doi: 10.1111/j.1432-1033.1987.tb11019.x. [DOI] [PubMed] [Google Scholar]
  36. Trybus K. M. Role of myosin light chains. J Muscle Res Cell Motil. 1994 Dec;15(6):587–594. doi: 10.1007/BF00121066. [DOI] [PubMed] [Google Scholar]
  37. Vemuri R., Lankford E. B., Poetter K., Hassanzadeh S., Takeda K., Yu Z. X., Ferrans V. J., Epstein N. D. The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1048–1053. doi: 10.1073/pnas.96.3.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Warmke J., Yamakawa M., Molloy J., Falkenthal S., Maughan D. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila. J Cell Biol. 1992 Dec;119(6):1523–1539. doi: 10.1083/jcb.119.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES