Abstract
Atomic force microscopy was used to investigate the surface morphology and transverse stiffness of myofibrils from Drosophila indirect flight muscle exposed to different physiologic solutions. I- and A-bands were clearly observed, and thick filaments were resolved along the periphery of the myofibril. Interfilament spacings correlated well with estimates from previous x-ray diffraction studies. Transverse stiffness was measured by using a blunt tip to indent a small section of the myofibrillar surface in the region of myofilament overlap. At 10 nm indention, the effective transverse stiffness (K( perpendicular)) of myofibrils in rigor solution (ATP-free, pCa 4.5) was 10.3 +/- 5.0 pN nm(-1) (mean +/- SEM, n = 8); in activating solution (pCa 4.5), 5.9 +/- 3.1 pN nm(-1); and in relaxing solution (pCa 8), 4.4 +/- 2.0 pN nm(-1). The apparent transverse Young's modulus (E( perpendicular)) was 94 +/- 41 kPa in the rigor state and 40 +/- 17 kPa in the relaxed state. The value of E( perpendicular) for calcium-activated myofibrils (55 +/- 29 kPa) was approximately a tenth that of Young's modulus in the longitudinal direction, a difference that at least partly reflects the transverse flexibility of the myosin molecule.
Full Text
The Full Text of this article is available as a PDF (252.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
- Bonn D, Kellay H, Prochnow M, Ben-Djemiaa K, Meunier J. Delayed fracture of an inhomogeneous soft solid . Science. 1998 Apr 10;280(5361):265–267. doi: 10.1126/science.280.5361.265. [DOI] [PubMed] [Google Scholar]
- Brenner B., Yu L. C., Chalovich J. M. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5739–5743. doi: 10.1073/pnas.88.13.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner B., Yu L. C. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle. J Physiol. 1991 Sep;441:703–718. doi: 10.1113/jphysiol.1991.sp018774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson M. H., Hyatt C. J., Lehmann F. O., Moore J. R., Reedy M. C., Simcox A., Tohtong R., Vigoreaux J. O., Yamashita H., Maughan D. W. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J. 1997 Dec;73(6):3122–3134. doi: 10.1016/S0006-3495(97)78338-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Maughan David W., Vigoreaux Jim O. An Integrated View of Insect Flight Muscle: Genes, Motor Molecules, and Motion. News Physiol Sci. 1999 Jun;14(NaN):87–92. doi: 10.1152/physiologyonline.1999.14.3.87. [DOI] [PubMed] [Google Scholar]
- Millman B. M. The filament lattice of striated muscle. Physiol Rev. 1998 Apr;78(2):359–391. doi: 10.1152/physrev.1998.78.2.359. [DOI] [PubMed] [Google Scholar]
- Radmacher M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag. 1997 Mar-Apr;16(2):47–57. doi: 10.1109/51.582176. [DOI] [PubMed] [Google Scholar]
- Reedy M. K., Reedy M. C. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol. 1985 Sep 5;185(1):145–176. doi: 10.1016/0022-2836(85)90188-3. [DOI] [PubMed] [Google Scholar]
- Schmitz H., Lucaveche C., Reedy M. K., Taylor K. A. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J. 1994 Oct;67(4):1620–1633. doi: 10.1016/S0006-3495(94)80635-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenberg M. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces. Biophys J. 1980 Apr;30(1):51–67. doi: 10.1016/S0006-3495(80)85076-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenberg M. Geometrical factors influencing muscle force development. II. Radial forces. Biophys J. 1980 Apr;30(1):69–77. doi: 10.1016/S0006-3495(80)85077-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shroff S. G., Saner D. R., Lal R. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am J Physiol. 1995 Jul;269(1 Pt 1):C286–C292. doi: 10.1152/ajpcell.1995.269.1.C286. [DOI] [PubMed] [Google Scholar]
- Sparrow J., Drummond D., Peckham M., Hennessey E., White D. Protein engineering and the study of muscle contraction in Drosophila flight muscles. J Cell Sci Suppl. 1991;14:73–78. doi: 10.1242/jcs.1991.supplement_14.15. [DOI] [PubMed] [Google Scholar]
- Tawada K., Kimura M. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation. Biophys J. 1984 Mar;45(3):593–602. doi: 10.1016/S0006-3495(84)84197-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor K. A., Reedy M. C., Reedy M. K., Crowther R. A. Crossbridges in the complete unit cell of rigor insect flight muscle imaged by three-dimensional reconstruction from oblique sections. J Mol Biol. 1993 Sep 5;233(1):86–108. doi: 10.1006/jmbi.1993.1487. [DOI] [PubMed] [Google Scholar]
- Tregear R. T., Edwards R. J., Irving T. C., Poole K. J., Reedy M. C., Schmitz H., Towns-Andrews E., Reedy M. K. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J. 1998 Mar;74(3):1439–1451. doi: 10.1016/S0006-3495(98)77856-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umazume Y., Kasuga N. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions. Biophys J. 1984 Apr;45(4):783–788. doi: 10.1016/S0006-3495(84)84222-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshikawa Y., Yasuike T., Yagi A., Yamada T. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy. Biochem Biophys Res Commun. 1999 Mar 5;256(1):13–19. doi: 10.1006/bbrc.1999.0279. [DOI] [PubMed] [Google Scholar]