Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1490–1497. doi: 10.1016/S0006-3495(00)76702-6

Morphology and transverse stiffness of Drosophila myofibrils measured by atomic force microscopy.

L R Nyland 1, D W Maughan 1
PMCID: PMC1300747  PMID: 10692334

Abstract

Atomic force microscopy was used to investigate the surface morphology and transverse stiffness of myofibrils from Drosophila indirect flight muscle exposed to different physiologic solutions. I- and A-bands were clearly observed, and thick filaments were resolved along the periphery of the myofibril. Interfilament spacings correlated well with estimates from previous x-ray diffraction studies. Transverse stiffness was measured by using a blunt tip to indent a small section of the myofibrillar surface in the region of myofilament overlap. At 10 nm indention, the effective transverse stiffness (K( perpendicular)) of myofibrils in rigor solution (ATP-free, pCa 4.5) was 10.3 +/- 5.0 pN nm(-1) (mean +/- SEM, n = 8); in activating solution (pCa 4.5), 5.9 +/- 3.1 pN nm(-1); and in relaxing solution (pCa 8), 4.4 +/- 2.0 pN nm(-1). The apparent transverse Young's modulus (E( perpendicular)) was 94 +/- 41 kPa in the rigor state and 40 +/- 17 kPa in the relaxed state. The value of E( perpendicular) for calcium-activated myofibrils (55 +/- 29 kPa) was approximately a tenth that of Young's modulus in the longitudinal direction, a difference that at least partly reflects the transverse flexibility of the myosin molecule.

Full Text

The Full Text of this article is available as a PDF (252.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  2. Bonn D, Kellay H, Prochnow M, Ben-Djemiaa K, Meunier J. Delayed fracture of an inhomogeneous soft solid . Science. 1998 Apr 10;280(5361):265–267. doi: 10.1126/science.280.5361.265. [DOI] [PubMed] [Google Scholar]
  3. Brenner B., Yu L. C., Chalovich J. M. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5739–5743. doi: 10.1073/pnas.88.13.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B., Yu L. C. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle. J Physiol. 1991 Sep;441:703–718. doi: 10.1113/jphysiol.1991.sp018774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dickinson M. H., Hyatt C. J., Lehmann F. O., Moore J. R., Reedy M. C., Simcox A., Tohtong R., Vigoreaux J. O., Yamashita H., Maughan D. W. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J. 1997 Dec;73(6):3122–3134. doi: 10.1016/S0006-3495(97)78338-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  7. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  8. Maughan David W., Vigoreaux Jim O. An Integrated View of Insect Flight Muscle: Genes, Motor Molecules, and Motion. News Physiol Sci. 1999 Jun;14(NaN):87–92. doi: 10.1152/physiologyonline.1999.14.3.87. [DOI] [PubMed] [Google Scholar]
  9. Millman B. M. The filament lattice of striated muscle. Physiol Rev. 1998 Apr;78(2):359–391. doi: 10.1152/physrev.1998.78.2.359. [DOI] [PubMed] [Google Scholar]
  10. Radmacher M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag. 1997 Mar-Apr;16(2):47–57. doi: 10.1109/51.582176. [DOI] [PubMed] [Google Scholar]
  11. Reedy M. K., Reedy M. C. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol. 1985 Sep 5;185(1):145–176. doi: 10.1016/0022-2836(85)90188-3. [DOI] [PubMed] [Google Scholar]
  12. Schmitz H., Lucaveche C., Reedy M. K., Taylor K. A. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J. 1994 Oct;67(4):1620–1633. doi: 10.1016/S0006-3495(94)80635-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schoenberg M. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces. Biophys J. 1980 Apr;30(1):51–67. doi: 10.1016/S0006-3495(80)85076-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schoenberg M. Geometrical factors influencing muscle force development. II. Radial forces. Biophys J. 1980 Apr;30(1):69–77. doi: 10.1016/S0006-3495(80)85077-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shroff S. G., Saner D. R., Lal R. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am J Physiol. 1995 Jul;269(1 Pt 1):C286–C292. doi: 10.1152/ajpcell.1995.269.1.C286. [DOI] [PubMed] [Google Scholar]
  16. Sparrow J., Drummond D., Peckham M., Hennessey E., White D. Protein engineering and the study of muscle contraction in Drosophila flight muscles. J Cell Sci Suppl. 1991;14:73–78. doi: 10.1242/jcs.1991.supplement_14.15. [DOI] [PubMed] [Google Scholar]
  17. Tawada K., Kimura M. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation. Biophys J. 1984 Mar;45(3):593–602. doi: 10.1016/S0006-3495(84)84197-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor K. A., Reedy M. C., Reedy M. K., Crowther R. A. Crossbridges in the complete unit cell of rigor insect flight muscle imaged by three-dimensional reconstruction from oblique sections. J Mol Biol. 1993 Sep 5;233(1):86–108. doi: 10.1006/jmbi.1993.1487. [DOI] [PubMed] [Google Scholar]
  19. Tregear R. T., Edwards R. J., Irving T. C., Poole K. J., Reedy M. C., Schmitz H., Towns-Andrews E., Reedy M. K. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J. 1998 Mar;74(3):1439–1451. doi: 10.1016/S0006-3495(98)77856-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Umazume Y., Kasuga N. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions. Biophys J. 1984 Apr;45(4):783–788. doi: 10.1016/S0006-3495(84)84222-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yoshikawa Y., Yasuike T., Yagi A., Yamada T. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy. Biochem Biophys Res Commun. 1999 Mar 5;256(1):13–19. doi: 10.1006/bbrc.1999.0279. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES