Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1498–1518. doi: 10.1016/S0006-3495(00)76703-8

Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study.

A N Naimushin 1, B S Fujimoto 1, J M Schurr 1
PMCID: PMC1300748  PMID: 10692335

Abstract

DNA may exhibit three different kinds of bends: 1) permanent bends; 2) slowly relaxing bends due to fluctuations in a prevailing equilibrium between differently curved secondary conformations; and 3) rapidly relaxing dynamic bends within a single potential-of-mean-force basin. The dynamic bending rigidity (kappa(d)), or equivalently the dynamic persistence length, P(d) = kappa(d)/k(B)T, governs the rapidly relaxing bends, which are responsible for the flexural dynamics of DNA on a short time scale, t < or = 10(-5) s. However, all three kinds of bends contribute to the total equilibrium persistence length, P(tot), according to 1/P(tot) congruent with 1/P(pb) + 1/P(sr) + 1/P(d), where P(pb) is the contribution of the permanent bends and P(sr) is the contribution of the slowly relaxing bends. Both P(d) and P(tot) are determined for the same 200-bp DNA in 4 mM ionic strength by measuring its optical anisotropy, r(t), from 0 to 10 micros. Time-resolved fluorescence polarization anisotropy (FPA) measurements yield r(t) for DNA/ethidium complexes (1 dye/200 bp) from 0 to 120 ns. A new transient polarization grating (TPG) experiment provides r(t) for DNA/methylene blue complexes (1 dye/100 bp) over a much longer time span, from 20 ns to 10 micros. Accurate data in the very tail of the decay enable a model-independent determination of the relaxation time (tau(R)) of the end-over-end tumbling motion, from which P(tot) = 500 A is estimated. The FPA data are used to obtain the best-fit pairs of P(d) and torsion elastic constant (alpha) values that fit those data equally well, and which are used to eliminate alpha as an independent variable. When the relevant theory is fitted to the entire TPG signal (S(t)), the end-over-end rotational diffusion coefficient is fixed at its measured value and alpha is eliminated in favor of P(d). Neither a true minimum in chi-squared nor a satisfactory fit could be obtained for P(d) anywhere in the range 500-5000 A, unless an adjustable amplitude of azimuthal wobble of the methylene blue was admitted. In that case, a well-defined global minimum and a reasonably good fit emerged at P(d) = 2000 A and <deltazeta(2)>(1/2) = 25 degrees. The discrimination against P(d) values <1600 A is very great. By combining the values, P(tot) = 500 A and P(d) = 2000 A with a literature estimate, P(pb) = 1370 A, a value P(sr) = 1300 A is estimated for the contribution of slowly relaxing bends. This value is analyzed in terms of a simple model in which the DNA is divided up into domains containing m bp, each of which experiences an all-or-none equilibrium between a straight and a uniformly curved conformation. With an appropriate estimate of the average bend angle per basepair of the curved conformation, a lower bound estimate, m = 55 bp, is obtained for the domain size of the coherently bent state. Previous measurements suggest that this coherent bend is not directional, or phase-locked, to the azimuthal orientation of the filament.

Full Text

The Full Text of this article is available as a PDF (244.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2312–2316. doi: 10.1073/pnas.88.6.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brukner I., Susic S., Dlakic M., Savic A., Pongor S. Physiological concentration of magnesium ions induces a strong macroscopic curvature in GGGCCC-containing DNA. J Mol Biol. 1994 Feb 11;236(1):26–32. doi: 10.1006/jmbi.1994.1115. [DOI] [PubMed] [Google Scholar]
  3. Chan S. S., Breslauer K. J., Hogan M. E., Kessler D. J., Austin R. H., Ojemann J., Passner J. M., Wiles N. C. Physical studies of DNA premelting equilibria in duplexes with and without homo dA.dT tracts: correlations with DNA bending. Biochemistry. 1990 Jul 3;29(26):6161–6171. doi: 10.1021/bi00478a008. [DOI] [PubMed] [Google Scholar]
  4. Clendenning J. B., Schurr J. M. Circularization of small DNAs in the presence of ethidium: a theoretical analysis. Biopolymers. 1994 Jul;34(7):849–868. doi: 10.1002/bip.360340705. [DOI] [PubMed] [Google Scholar]
  5. Davis N. A., Majee S. S., Kahn J. D. TATA box DNA deformation with and without the TATA box-binding protein. J Mol Biol. 1999 Aug 13;291(2):249–265. doi: 10.1006/jmbi.1999.2947. [DOI] [PubMed] [Google Scholar]
  6. Delrow J. J., Heath P. J., Schurr J. M. On the origin of the temperature dependence of the supercoiling free energy. Biophys J. 1997 Nov;73(5):2688–2701. doi: 10.1016/S0006-3495(97)78297-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diebold R. J., Rajaram N., Leonard D. A., Kerppola T. K. Molecular basis of cooperative DNA bending and oriented heterodimer binding in the NFAT1-Fos-Jun-ARRE2 complex. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7915–7920. doi: 10.1073/pnas.95.14.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diekmann S., Hillen W., Morgeneyer B., Wells R. D., Pörschke D. Orientation relaxation of DNA restriction fragments and the internal mobility of the double helix. Biophys Chem. 1982 Jul;15(4):263–270. doi: 10.1016/0301-4622(82)80009-4. [DOI] [PubMed] [Google Scholar]
  9. Diekmann S. Temperature and salt dependence of the gel migration anomaly of curved DNA fragments. Nucleic Acids Res. 1987 Jan 12;15(1):247–265. doi: 10.1093/nar/15.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dlakic M., Harrington R. E. Bending and torsional flexibility of G/C-rich sequences as determined by cyclization assays. J Biol Chem. 1995 Dec 15;270(50):29945–29952. doi: 10.1074/jbc.270.50.29945. [DOI] [PubMed] [Google Scholar]
  11. Dlakic M., Harrington R. E. Unconventional helical phasing of repetitive DNA motifs reveals their relative bending contributions. Nucleic Acids Res. 1998 Sep 15;26(18):4274–4279. doi: 10.1093/nar/26.18.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dlakić M., Harrington R. E. The effects of sequence context on DNA curvature. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3847–3852. doi: 10.1073/pnas.93.9.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engelhorn M., Geiselmann J. Maximal transcriptional activation by the IHF protein of Escherichia coli depends on optimal DNA bending by the activator. Mol Microbiol. 1998 Oct;30(2):431–441. doi: 10.1046/j.1365-2958.1998.01078.x. [DOI] [PubMed] [Google Scholar]
  14. Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V., Vologodskii A. V. Torsional and bending rigidity of the double helix from data on small DNA rings. J Biomol Struct Dyn. 1985 Feb;2(5):1005–1012. doi: 10.1080/07391102.1985.10507616. [DOI] [PubMed] [Google Scholar]
  15. Fujimoto B. S., Miller J. M., Ribeiro N. S., Schurr J. M. Effects of different cations on the hydrodynamic radius of DNA. Biophys J. 1994 Jul;67(1):304–308. doi: 10.1016/S0006-3495(94)80481-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fujimoto B. S., Schurr J. M. Dependence of the torsional rigidity of DNA on base composition. Nature. 1990 Mar 8;344(6262):175–177. doi: 10.1038/344175a0. [DOI] [PubMed] [Google Scholar]
  17. Gaudin F., Paquet F., Chanteloup L., Beau J. M., Nguyen T. T., Lancelot G. Selectively 13C-enriched DNA: dynamics of the C1'-H1' vector in d(CGCAAATTTGCG)2. J Biomol NMR. 1995 Jan;5(1):49–58. doi: 10.1007/BF00227469. [DOI] [PubMed] [Google Scholar]
  18. Gebe J. A., Allison S. A., Clendenning J. B., Schurr J. M. Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J. 1995 Feb;68(2):619–633. doi: 10.1016/S0006-3495(95)80223-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W., Schurr J. M. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J Mol Biol. 1996 Sep 20;262(2):105–128. doi: 10.1006/jmbi.1996.0502. [DOI] [PubMed] [Google Scholar]
  20. Geiselmann J. The role of DNA conformation in transcriptional initiation and activation in Escherichia coli. Biol Chem. 1997 Jul;378(7):599–607. [PubMed] [Google Scholar]
  21. Gralla J. D. Activation and repression of E. coli promoters. Curr Opin Genet Dev. 1996 Oct;6(5):526–530. doi: 10.1016/s0959-437x(96)80079-7. [DOI] [PubMed] [Google Scholar]
  22. Gralla J. D. Transcriptional control--lessons from an E. coli promoter data base. Cell. 1991 Aug 9;66(3):415–418. doi: 10.1016/0092-8674(81)90001-5. [DOI] [PubMed] [Google Scholar]
  23. Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994 Mar;10(3):94–100. doi: 10.1016/0168-9525(94)90232-1. [DOI] [PubMed] [Google Scholar]
  24. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  25. Hagerman P. J. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981 Jul;20(7):1503–1535. doi: 10.1002/bip.1981.360200710. [DOI] [PubMed] [Google Scholar]
  26. Hagerman P. J., Ramadevi V. A. Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. I. Computational analysis. J Mol Biol. 1990 Mar 20;212(2):351–362. doi: 10.1016/0022-2836(90)90130-E. [DOI] [PubMed] [Google Scholar]
  27. Hagmar P., Pierrou S., Nielsen P., Nordén B., Kubista M. Ionic strength dependence of the binding of methylene blue to chromatin and calf thymus DNA. J Biomol Struct Dyn. 1992 Feb;9(4):667–679. doi: 10.1080/07391102.1992.10507947. [DOI] [PubMed] [Google Scholar]
  28. Harrington R. E. Studies of DNA bending and flexibility using gel electrophoresis. Electrophoresis. 1993 Aug;14(8):732–746. doi: 10.1002/elps.11501401116. [DOI] [PubMed] [Google Scholar]
  29. Heath P. J., Clendenning J. B., Fujimoto B. S., Schurr J. M. Effect of bending strain on the torsion elastic constant of DNA. J Mol Biol. 1996 Aug 2;260(5):718–730. doi: 10.1006/jmbi.1996.0432. [DOI] [PubMed] [Google Scholar]
  30. Hodges-Garcia Y., Hagerman P. J. Investigation of the influence of cytosine methylation on DNA flexibility. J Biol Chem. 1995 Jan 6;270(1):197–201. doi: 10.1074/jbc.270.1.197. [DOI] [PubMed] [Google Scholar]
  31. Hogan M., LeGrange J., Austin B. Dependence of DNA helix flexibility on base composition. Nature. 1983 Aug 25;304(5928):752–754. doi: 10.1038/304752a0. [DOI] [PubMed] [Google Scholar]
  32. Hogan M., Wang J., Austin R. H., Monitto C. L., Hershkowitz S. Molecular motion of DNA as measured by triplet anisotropy decay. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3518–3522. doi: 10.1073/pnas.79.11.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Horowitz D. S., Wang J. C. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984 Feb 15;173(1):75–91. doi: 10.1016/0022-2836(84)90404-2. [DOI] [PubMed] [Google Scholar]
  34. Hustedt E. J., Spaltenstein A., Kirchner J. J., Hopkins P. B., Robinson B. H. Motions of short DNA duplexes: an analysis of DNA dynamics using an EPR-active probe. Biochemistry. 1993 Feb 23;32(7):1774–1787. doi: 10.1021/bi00058a011. [DOI] [PubMed] [Google Scholar]
  35. Ikeda K., Nagano K., Kawakami K. Possible implications of Sp1-induced bending of DNA on synergistic activation of transcription. Gene. 1993 Dec 22;136(1-2):341–343. doi: 10.1016/0378-1119(93)90492-l. [DOI] [PubMed] [Google Scholar]
  36. Kahn J. D., Crothers D. M. Measurement of the DNA bend angle induced by the catabolite activator protein using Monte Carlo simulation of cyclization kinetics. J Mol Biol. 1998 Feb 13;276(1):287–309. doi: 10.1006/jmbi.1997.1515. [DOI] [PubMed] [Google Scholar]
  37. Kennedy M. A., Nuutero S. T., Davis J. T., Drobny G. P., Reid B. R. Mobility at the TpA cleavage site in the T3A3-containing AhaIII and PmeI restriction sequences. Biochemistry. 1993 Aug 10;32(31):8022–8035. doi: 10.1021/bi00082a025. [DOI] [PubMed] [Google Scholar]
  38. Kim J. L., Burley S. K. 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat Struct Biol. 1994 Sep;1(9):638–653. doi: 10.1038/nsb0994-638. [DOI] [PubMed] [Google Scholar]
  39. Kolb A., Spassky A., Chapon C., Blazy B., Buc H. On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res. 1983 Nov 25;11(22):7833–7852. doi: 10.1093/nar/11.22.7833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Liu-Johnson H. N., Gartenberg M. R., Crothers D. M. The DNA binding domain and bending angle of E. coli CAP protein. Cell. 1986 Dec 26;47(6):995–1005. doi: 10.1016/0092-8674(86)90814-7. [DOI] [PubMed] [Google Scholar]
  41. McAteer K., Ellis P. D., Kennedy M. A. The effects of sequence context on base dynamics at TpA steps in DNA studied by NMR. Nucleic Acids Res. 1995 Oct 11;23(19):3962–3966. doi: 10.1093/nar/23.19.3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mossing M. C., Record M. T., Jr Upstream operators enhance repression of the lac promoter. Science. 1986 Aug 22;233(4766):889–892. doi: 10.1126/science.3090685. [DOI] [PubMed] [Google Scholar]
  43. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  44. Nordén B., Tjerneld F. Structure of methylene blue-DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers. 1982 Sep;21(9):1713–1734. doi: 10.1002/bip.360210904. [DOI] [PubMed] [Google Scholar]
  45. Okonogi T. M., Reese A. W., Alley S. C., Hopkins P. B., Robinson B. H. Flexibility of duplex DNA on the submicrosecond timescale. Biophys J. 1999 Dec;77(6):3256–3276. doi: 10.1016/S0006-3495(99)77157-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Paquet F., Gaudin F., Lancelot G. Selectively 13C-enriched DNA: evidence from 13C1' relaxation rate measurements of an internal dynamics sequence effect in the lac operator. J Biomol NMR. 1996 Oct;8(3):252–260. doi: 10.1007/BF00410324. [DOI] [PubMed] [Google Scholar]
  47. Parkhurst K. M., Brenowitz M., Parkhurst L. J. Simultaneous binding and bending of promoter DNA by the TATA binding protein: real time kinetic measurements. Biochemistry. 1996 Jun 11;35(23):7459–7465. doi: 10.1021/bi9530301. [DOI] [PubMed] [Google Scholar]
  48. Parkhurst K. M., Richards R. M., Brenowitz M., Parkhurst L. J. Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex. J Mol Biol. 1999 Jun 25;289(5):1327–1341. doi: 10.1006/jmbi.1999.2835. [DOI] [PubMed] [Google Scholar]
  49. Passner J. M., Steitz T. A. The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2843–2847. doi: 10.1073/pnas.94.7.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Porschke D. Persistence length and bending dynamics of DNA from electrooptical measurements at high salt concentrations. Biophys Chem. 1991 May;40(2):169–179. doi: 10.1016/0301-4622(91)87006-q. [DOI] [PubMed] [Google Scholar]
  51. Porschke D., Zacharias W., Wells R. D. B-Z DNA junctions are neither highly flexible nor strongly bent. Biopolymers. 1987 Nov;26(11):1971–1974. doi: 10.1002/bip.360261111. [DOI] [PubMed] [Google Scholar]
  52. Pérez-Martín J., de Lorenzo V. Clues and consequences of DNA bending in transcription. Annu Rev Microbiol. 1997;51:593–628. doi: 10.1146/annurev.micro.51.1.593. [DOI] [PubMed] [Google Scholar]
  53. Rice P. A., Yang S., Mizuuchi K., Nash H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. 1996 Dec 27;87(7):1295–1306. doi: 10.1016/s0092-8674(00)81824-3. [DOI] [PubMed] [Google Scholar]
  54. Rippe K., von Hippel P. H., Langowski J. Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci. 1995 Dec;20(12):500–506. doi: 10.1016/s0968-0004(00)89117-3. [DOI] [PubMed] [Google Scholar]
  55. Schellman J. A., Harvey S. C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys Chem. 1995 Jun-Jul;55(1-2):95–114. doi: 10.1016/0301-4622(94)00144-9. [DOI] [PubMed] [Google Scholar]
  56. Schleif R. DNA looping. Annu Rev Biochem. 1992;61:199–223. doi: 10.1146/annurev.bi.61.070192.001215. [DOI] [PubMed] [Google Scholar]
  57. Schultz S. C., Shields G. C., Steitz T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 1991 Aug 30;253(5023):1001–1007. doi: 10.1126/science.1653449. [DOI] [PubMed] [Google Scholar]
  58. Schurr J. M., Babcock H. P., Gebe J. A. Effect of anisotropy of the bending rigidity on the supercoiling free energy of small circular DNAs. Biopolymers. 1995 Nov;36(5):633–641. doi: 10.1002/bip.360360509. [DOI] [PubMed] [Google Scholar]
  59. Schurr J. M., Delrow J. J., Fujimoto B. S., Benight A. S. The question of long-range allosteric transitions in DNA. Biopolymers. 1997;44(3):283–308. doi: 10.1002/(SICI)1097-0282(1997)44:3<283::AID-BIP7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  60. Schurr J. M. Effect of anisotropic bending rigidity and finite twisting rigidity on statistical properties of DNA model filaments. Biopolymers. 1985 Jul;24(7):1233–1246. doi: 10.1002/bip.360240710. [DOI] [PubMed] [Google Scholar]
  61. Schurr J. M., Fujimoto B. S. The amplitude of local angular motions of intercalated dyes and bases in DNA. Biopolymers. 1988 Oct;27(10):1543–1569. doi: 10.1002/bip.360271003. [DOI] [PubMed] [Google Scholar]
  62. Shimada J., Yamakawa H. Statistical mechanics of DNA topoisomers. The helical worm-like chain. J Mol Biol. 1985 Jul 20;184(2):319–329. doi: 10.1016/0022-2836(85)90383-3. [DOI] [PubMed] [Google Scholar]
  63. Shore D., Baldwin R. L. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983 Nov 15;170(4):983–1007. doi: 10.1016/s0022-2836(83)80199-5. [DOI] [PubMed] [Google Scholar]
  64. Sjøttem E., Andersen C., Johansen T. Structural and functional analyses of DNA bending induced by Sp1 family transcription factors. J Mol Biol. 1997 Apr 4;267(3):490–504. doi: 10.1006/jmbi.1997.0893. [DOI] [PubMed] [Google Scholar]
  65. Song L., Schurr J. M. Dynamic bending rigidity of DNA. Biopolymers. 1990;30(3-4):229–237. doi: 10.1002/bip.360300302. [DOI] [PubMed] [Google Scholar]
  66. Spielmann H. P. Dynamics in psoralen-damaged DNA by 1H-detected natural abundance 13C NMR spectroscopy. Biochemistry. 1998 Apr 21;37(16):5426–5438. doi: 10.1021/bi972536b. [DOI] [PubMed] [Google Scholar]
  67. Sprous D., Zacharias W., Wood Z. A., Harvey S. C. Dehydrating agents sharply reduce curvature in DNAs containing A tracts. Nucleic Acids Res. 1995 May 25;23(10):1816–1821. doi: 10.1093/nar/23.10.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stellwagen N. C. Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on polyacrylamide gels. Biochemistry. 1983 Dec 20;22(26):6186–6193. doi: 10.1021/bi00295a023. [DOI] [PubMed] [Google Scholar]
  69. Taylor W. H., Hagerman P. J. Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. II. NaCl-dependence of DNA flexibility and helical repeat. J Mol Biol. 1990 Mar 20;212(2):363–376. doi: 10.1016/0022-2836(90)90131-5. [DOI] [PubMed] [Google Scholar]
  70. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES