Abstract
A force microscope operated with an amplitude modulation feedback (usually known as tapping-mode atomic force microscope) has two tip-sample interaction regimes, attractive and repulsive. We have studied the performance of those regimes to imaging single antibody molecules. The attractive interaction regime allows determination of the basic morphologies of the antibodies on the support. More importantly, this regime is able to resolve the characteristic Y-shaped domain structure of antibodies and the hinge region between domains. Imaging in the repulsive interaction regime is associated with the irreversible deformation of the molecules. This causes a significant loss in resolution and contrast. Two major physical differences distinguish the repulsive interaction regime from the attractive interaction regime: the existence of tip-sample contact and the strength of the forces involved.
Full Text
The Full Text of this article is available as a PDF (283.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
- Anczykowski B, Krüger D, Fuchs H. Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. Phys Rev B Condens Matter. 1996 Jun 15;53(23):15485–15488. doi: 10.1103/physrevb.53.15485. [DOI] [PubMed] [Google Scholar]
- Bustamante C., Rivetti C., Keller D. J. Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol. 1997 Oct;7(5):709–716. doi: 10.1016/s0959-440x(97)80082-6. [DOI] [PubMed] [Google Scholar]
- Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fritz J., Anselmetti D., Jarchow J., Fernàndez-Busquets X. Probing single biomolecules with atomic force microscopy. J Struct Biol. 1997 Jul;119(2):165–171. doi: 10.1006/jsbi.1997.3887. [DOI] [PubMed] [Google Scholar]
- Han W., Mou J., Sheng J., Yang J., Shao Z. Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry. 1995 Jul 4;34(26):8215–8220. doi: 10.1021/bi00026a001. [DOI] [PubMed] [Google Scholar]
- Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
- Margeat E., Le Grimellec C., Royer C. A. Visualization of trp repressor and its complexes with DNA by atomic force microscopy. Biophys J. 1998 Dec;75(6):2712–2720. doi: 10.1016/S0006-3495(98)77715-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazeran P. E., Loubet J. L., Martelet C., Theretz A. Under buffer SFM observation of immunospecies adsorbed on a cyano grafted silicon substrate. Ultramicroscopy. 1995 Aug;60(1):33–40. doi: 10.1016/0304-3991(95)00093-g. [DOI] [PubMed] [Google Scholar]
- Muñoz-Botella S., Martin M. A., del Castillo B., Vázquez L. Differentiating inclusion complexes from host molecules by tapping-mode atomic force microscopy. Biophys J. 1996 Jul;71(1):86–90. doi: 10.1016/S0006-3495(96)79238-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnesorge F., Binnig G. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science. 1993 Jun 4;260(5113):1451–1456. doi: 10.1126/science.260.5113.1451. [DOI] [PubMed] [Google Scholar]
- Putman C. A., van der Werf K. O., de Grooth B. G., van Hulst N. F., Greve J. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J. 1994 Oct;67(4):1749–1753. doi: 10.1016/S0006-3495(94)80649-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quist A. P., Bergman A. A., Reimann C. T., Oscarsson S. O., Sundqvist B. U. Imaging of single antigens, antibodies, and specific immunocomplex formation by scanning force microscopy. Scanning Microsc. 1995 Jun;9(2):395–400. [PubMed] [Google Scholar]
- Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverton E. W., Navia M. A., Davies D. R. Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5140–5144. doi: 10.1073/pnas.74.11.5140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson N. H., Fritz M., Radmacher M., Cleveland J. P., Schmidt C. F., Hansma P. K. Protein tracking and detection of protein motion using atomic force microscopy. Biophys J. 1996 May;70(5):2421–2431. doi: 10.1016/S0006-3495(96)79812-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valle M., Valpuesta J. M., Carrascosa J. L., Tamayo J., Garcia R. The interaction of DNA with bacteriophage phi 29 connector: a study by AFM and TEM. J Struct Biol. 1996 May-Jun;116(3):390–398. doi: 10.1006/jsbi.1996.0056. [DOI] [PubMed] [Google Scholar]
- Willemsen O. H., Snel M. M., van der Werf K. O., de Grooth B. G., Greve J., Hinterdorfer P., Gruber H. J., Schindler H., van Kooyk Y., Figdor C. G. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J. 1998 Nov;75(5):2220–2228. doi: 10.1016/S0006-3495(98)77666-0. [DOI] [PMC free article] [PubMed] [Google Scholar]