Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Mar;78(3):1620–1633. doi: 10.1016/S0006-3495(00)76714-2

Factors governing the assembly of cationic phospholipid-DNA complexes.

M T Kennedy 1, E V Pozharski 1, V A Rakhmanova 1, R C MacDonald 1
PMCID: PMC1300759  PMID: 10692346

Abstract

The interaction of DNA with a novel cationic phospholipid transfection reagent, 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC), was investigated by monitoring thermal effects, particle size, vesicle rupture, and lipid mixing. By isothermal titration calorimetry, the heat of interaction between large unilamellar EDOPC vesicles and plasmid DNA was endothermic at both physiological and low ionic strength, although the heat absorbed was slightly larger at the higher ionic strength. The energetic driving force for DNA-EDOPC association is thus an increase in entropy, presumably due to release of counterions and water. The estimated minimum entropy gain per released counterion was 1.4 cal/mole- degrees K (about 0.7 kT), consistent with previous theoretical predictions. All experimental approaches revealed significant differences in the DNA-lipid particle, depending upon whether complexes were formed by the addition of DNA to lipid or vice versa. When EDOPC vesicles were titrated with DNA at physiological ionic strength, particle size increased, vesicles ruptured, and membrane lipids became mixed as the amount of DNA was added up to a 1.6:1 (+:-) charge ratio. This charge ratio also corresponded to the calorimetric end point. In contrast, when lipid was added to DNA, vesicles remained separate and intact until a charge ratio of 1:1 (+:-) was exceeded. Under such conditions, the calorimetric end point was 3:1 (+:-). Thus it is clear that fundamental differences in DNA-cationic lipid complexes exist, depending upon their mode of formation. A model is proposed to explain the major differences between these two situations. Significant effects of ionic strength were observed; these are rationalized in terms of the model. The implications of the analysis are that considerable control can be exerted over the structure of the complex by exploiting vectorial preparation methods and manipulating ionic strength.

Full Text

The Full Text of this article is available as a PDF (170.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronsohn A. I., Hughes J. A. Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy. J Drug Target. 1998;5(3):163–169. doi: 10.3109/10611869808995871. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Boukhnikachvili T., Aguerre-Chariol O., Airiau M., Lesieur S., Ollivon M., Vacus J. Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett. 1997 Jun 9;409(2):188–194. doi: 10.1016/s0014-5793(97)00505-x. [DOI] [PubMed] [Google Scholar]
  4. Boussif O., Zanta M. A., Behr J. P. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996 Dec;3(12):1074–1080. [PubMed] [Google Scholar]
  5. Cevc G. Membrane electrostatics. Biochim Biophys Acta. 1990 Oct 8;1031(3):311–382. doi: 10.1016/0304-4157(90)90015-5. [DOI] [PubMed] [Google Scholar]
  6. Dan N. Multilamellar structures of DNA complexes with cationic liposomes. Biophys J. 1997 Oct;73(4):1842–1846. doi: 10.1016/S0006-3495(97)78214-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dan N. The structure of DNA complexes with cationic liposomes-cylindrical or flat bilayers? Biochim Biophys Acta. 1998 Feb 2;1369(1):34–38. doi: 10.1016/s0005-2736(97)00171-5. [DOI] [PubMed] [Google Scholar]
  8. Düzgüneş N., Goldstein J. A., Friend D. S., Felgner P. L. Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry. 1989 Nov 14;28(23):9179–9184. doi: 10.1021/bi00449a033. [DOI] [PubMed] [Google Scholar]
  9. Düzgüneş N., Wilschut J. Fusion assays monitoring intermixing of aqueous contents. Methods Enzymol. 1993;220:3–14. doi: 10.1016/0076-6879(93)20069-f. [DOI] [PubMed] [Google Scholar]
  10. Eastman S. J., Siegel C., Tousignant J., Smith A. E., Cheng S. H., Scheule R. K. Biophysical characterization of cationic lipid: DNA complexes. Biochim Biophys Acta. 1997 Apr 3;1325(1):41–62. doi: 10.1016/s0005-2736(96)00242-8. [DOI] [PubMed] [Google Scholar]
  11. Felgner J. H., Kumar R., Sridhar C. N., Wheeler C. J., Tsai Y. J., Border R., Ramsey P., Martin M., Felgner P. L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994 Jan 28;269(4):2550–2561. [PubMed] [Google Scholar]
  12. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fortunati E., Bout A., Zanta M. A., Valerio D., Scarpa M. In vitro and in vivo gene transfer to pulmonary cells mediated by cationic liposomes. Biochim Biophys Acta. 1996 Apr 10;1306(1):55–62. doi: 10.1016/0167-4781(95)00217-0. [DOI] [PubMed] [Google Scholar]
  14. Friend D. S., Papahadjopoulos D., Debs R. J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta. 1996 Jan 12;1278(1):41–50. doi: 10.1016/0005-2736(95)00219-7. [DOI] [PubMed] [Google Scholar]
  15. Gershon H., Ghirlando R., Guttman S. B., Minsky A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry. 1993 Jul 20;32(28):7143–7151. doi: 10.1021/bi00079a011. [DOI] [PubMed] [Google Scholar]
  16. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta. 1995 May 4;1235(2):305–312. doi: 10.1016/0005-2736(95)80018-b. [DOI] [PubMed] [Google Scholar]
  17. Harries D., May S., Gelbart W. M., Ben-Shaul A. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys J. 1998 Jul;75(1):159–173. doi: 10.1016/S0006-3495(98)77503-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayakawa K., Santerre J. P., Kwak J. C. The binding of cationic surfactants by DNA. Biophys Chem. 1983 Apr;17(3):175–181. doi: 10.1016/0301-4622(83)87001-x. [DOI] [PubMed] [Google Scholar]
  19. Huebner S., Battersby B. J., Grimm R., Cevc G. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J. 1999 Jun;76(6):3158–3166. doi: 10.1016/S0006-3495(99)77467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koltover I., Salditt T., Rädler J. O., Safinya C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998 Jul 3;281(5373):78–81. doi: 10.1126/science.281.5373.78. [DOI] [PubMed] [Google Scholar]
  21. Labat-Moleur F., Steffan A. M., Brisson C., Perron H., Feugeas O., Furstenberger P., Oberling F., Brambilla E., Behr J. P. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. 1996 Nov;3(11):1010–1017. [PubMed] [Google Scholar]
  22. Lee E. R., Marshall J., Siegel C. S., Jiang C., Yew N. S., Nichols M. R., Nietupski J. B., Ziegler R. J., Lane M. B., Wang K. X. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther. 1996 Sep 10;7(14):1701–1717. doi: 10.1089/hum.1996.7.14-1701. [DOI] [PubMed] [Google Scholar]
  23. MacDonald R. C., Ashley G. W., Shida M. M., Rakhmanova V. A., Tarahovsky Y. S., Pantazatos D. P., Kennedy M. T., Pozharski E. V., Baker K. A., Jones R. D. Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J. 1999 Nov;77(5):2612–2629. doi: 10.1016/S0006-3495(99)77095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  25. MacDonald R. C., Rakhmanova V. A., Choi K. L., Rosenzweig H. S., Lahiri M. K. O-ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci. 1999 Sep;88(9):896–904. doi: 10.1021/js990006q. [DOI] [PubMed] [Google Scholar]
  26. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  27. Matsui H., Johnson L. G., Randell S. H., Boucher R. C. Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J Biol Chem. 1997 Jan 10;272(2):1117–1126. doi: 10.1074/jbc.272.2.1117. [DOI] [PubMed] [Google Scholar]
  28. May S., Ben-Shaul A. DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures. Biophys J. 1997 Nov;73(5):2427–2440. doi: 10.1016/S0006-3495(97)78271-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McElvaney N. G. Is gene therapy in cystic fibrosis a realistic expectation? Curr Opin Pulm Med. 1996 Nov;2(6):466–471. [PubMed] [Google Scholar]
  30. Mok K. W., Cullis P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997 Nov;73(5):2534–2545. doi: 10.1016/S0006-3495(97)78282-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pantazatos D. P., MacDonald R. C. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J Membr Biol. 1999 Jul 1;170(1):27–38. doi: 10.1007/s002329900535. [DOI] [PubMed] [Google Scholar]
  32. Reimer D. L., Kong S., Bally M. B. Analysis of cationic liposome-mediated interactions of plasmid DNA with murine and human melanoma cells in vitro. J Biol Chem. 1997 Aug 1;272(31):19480–19487. doi: 10.1074/jbc.272.31.19480. [DOI] [PubMed] [Google Scholar]
  33. Reimer D. L., Zhang Y., Kong S., Wheeler J. J., Graham R. W., Bally M. B. Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry. 1995 Oct 3;34(39):12877–12883. doi: 10.1021/bi00039a050. [DOI] [PubMed] [Google Scholar]
  34. Ross P. C., Hui S. W. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 1999 Apr;6(4):651–659. doi: 10.1038/sj.gt.3300863. [DOI] [PubMed] [Google Scholar]
  35. Ross P. D., Shapiro J. T. Heat of interaction of DNA with polylysine, spermine, and Mg++. Biopolymers. 1974;13(2):415–416. doi: 10.1002/bip.1974.360130218. [DOI] [PubMed] [Google Scholar]
  36. Rädler J. O., Koltover I., Salditt T., Safinya C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997 Feb 7;275(5301):810–814. doi: 10.1126/science.275.5301.810. [DOI] [PubMed] [Google Scholar]
  37. Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
  38. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  39. Templeton N. S., Lasic D. D., Frederik P. M., Strey H. H., Roberts D. D., Pavlakis G. N. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997 Jul;15(7):647–652. doi: 10.1038/nbt0797-647. [DOI] [PubMed] [Google Scholar]
  40. Tseng W. C., Haselton F. R., Giorgio T. D. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem. 1997 Oct 10;272(41):25641–25647. doi: 10.1074/jbc.272.41.25641. [DOI] [PubMed] [Google Scholar]
  41. Wilschut J., Düzgüneş N., Fraley R., Papahadjopoulos D. Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry. 1980 Dec 23;19(26):6011–6021. doi: 10.1021/bi00567a011. [DOI] [PubMed] [Google Scholar]
  42. Wong F. M., Reimer D. L., Bally M. B. Cationic lipid binding to DNA: characterization of complex formation. Biochemistry. 1996 May 7;35(18):5756–5763. doi: 10.1021/bi952847r. [DOI] [PubMed] [Google Scholar]
  43. Xu Y., Hui S. W., Frederik P., Szoka F. C., Jr Physicochemical characterization and purification of cationic lipoplexes. Biophys J. 1999 Jul;77(1):341–353. doi: 10.1016/S0006-3495(99)76894-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  45. Yang Y., Li Q., Ertl H. C., Wilson J. M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol. 1995 Apr;69(4):2004–2015. doi: 10.1128/jvi.69.4.2004-2015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zabner J., Fasbender A. J., Moninger T., Poellinger K. A., Welsh M. J. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995 Aug 11;270(32):18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  47. Zelphati O., Szoka F. C., Jr Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11493–11498. doi: 10.1073/pnas.93.21.11493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou X., Huang L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta. 1994 Jan 19;1189(2):195–203. doi: 10.1016/0005-2736(94)90066-3. [DOI] [PubMed] [Google Scholar]
  49. Zuidam N. J., Barenholz Y. Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta. 1998 Jan 5;1368(1):115–128. doi: 10.1016/s0005-2736(97)00187-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES