Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1657–1664. doi: 10.1016/S0006-3495(00)76717-8

In vivo (31)P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle.

R A de Graaf 1, A van Kranenburg 1, K Nicolay 1
PMCID: PMC1300762  PMID: 10733948

Abstract

The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation.

Full Text

The Full Text of this article is available as a PDF (111.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agutter P. S., Malone P. C., Wheatley D. N. Intracellular transport mechanisms: a critique of diffusion theory. J Theor Biol. 1995 Sep 21;176(2):261–272. doi: 10.1006/jtbi.1995.0196. [DOI] [PubMed] [Google Scholar]
  2. Basser P. J., Mattiello J., LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994 Jan;66(1):259–267. doi: 10.1016/S0006-3495(94)80775-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Ruiter C. J., De Haan A., Sargeant A. J. Physiological characteristics of two extreme muscle compartments in gastrocnemius medialis of the anaesthetized rat. Acta Physiol Scand. 1995 Apr;153(4):313–324. doi: 10.1111/j.1748-1716.1995.tb09869.x. [DOI] [PubMed] [Google Scholar]
  4. Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
  5. Hubley M. J., Locke B. R., Moerland T. S. Reaction-diffusion analysis of the effects of temperature on high-energy phosphate dynamics in goldfish skeletal muscle. J Exp Biol. 1997 Mar;200(Pt 6):975–988. doi: 10.1242/jeb.200.6.975. [DOI] [PubMed] [Google Scholar]
  6. Hubley M. J., Locke B. R., Moerland T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim Biophys Acta. 1996 Oct 24;1291(2):115–121. doi: 10.1016/0304-4165(96)00053-0. [DOI] [PubMed] [Google Scholar]
  7. Hubley M. J., Moerland T. S. Application of homonuclear decoupling to measures of diffusion in biological 31P spin echo spectra. NMR Biomed. 1995 May;8(3):113–117. doi: 10.1002/nbm.1940080306. [DOI] [PubMed] [Google Scholar]
  8. Hubley M. J., Rosanske R. C., Moerland T. S. Diffusion coefficients of ATP and creatine phosphate in isolated muscle: pulsed gradient 31P NMR of small biological samples. NMR Biomed. 1995 Apr;8(2):72–78. doi: 10.1002/nbm.1940080205. [DOI] [PubMed] [Google Scholar]
  9. Jacobus W. E. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1035–1041. doi: 10.1016/0006-291x(85)91240-9. [DOI] [PubMed] [Google Scholar]
  10. Kinsey S. T., Locke B. R., Penke B., Moerland T. S. Diffusional anisotropy is induced by subcellular barriers in skeletal muscle. NMR Biomed. 1999 Feb;12(1):1–7. doi: 10.1002/(sici)1099-1492(199902)12:1<1::aid-nbm539>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  11. McDonald K. S., Fitts R. H. Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol (1985) 1995 Nov;79(5):1796–1802. doi: 10.1152/jappl.1995.79.5.1796. [DOI] [PubMed] [Google Scholar]
  12. Meyer R. A., Sweeney H. L., Kushmerick M. J. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. doi: 10.1152/ajpcell.1984.246.5.C365. [DOI] [PubMed] [Google Scholar]
  13. Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
  14. Moonen C. T., van Zijl P. C., Le Bihan D., DesPres D. In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med. 1990 Mar;13(3):467–477. doi: 10.1002/mrm.1910130314. [DOI] [PubMed] [Google Scholar]
  15. Nicolay K., van Dorsten F. A., Reese T., Kruiskamp M. J., Gellerich J. F., van Echteld C. J. In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice. Mol Cell Biochem. 1998 Jul;184(1-2):195–208. [PubMed] [Google Scholar]
  16. Nicolay K., van der Toorn A., Dijkhuizen R. M. In vivo diffusion spectroscopy. An overview. NMR Biomed. 1995 Nov-Dec;8(7-8):365–374. doi: 10.1002/nbm.1940080710. [DOI] [PubMed] [Google Scholar]
  17. Radda G. K. Control, bioenergetics, and adaptation in health and disease: noninvasive biochemistry from nuclear magnetic resonance. FASEB J. 1992 Sep;6(12):3032–3038. doi: 10.1096/fasebj.6.12.1521736. [DOI] [PubMed] [Google Scholar]
  18. Schluter J. M., Fitts R. H. Shortening velocity and ATPase activity of rat skeletal muscle fibers: effects of endurance exercise training. Am J Physiol. 1994 Jun;266(6 Pt 1):C1699–C1673. doi: 10.1152/ajpcell.1994.266.6.C1699. [DOI] [PubMed] [Google Scholar]
  19. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wheatley D. N. Diffusion theory, the cell and the synapse. Biosystems. 1998 Feb;45(2):151–163. doi: 10.1016/s0303-2647(97)00073-7. [DOI] [PubMed] [Google Scholar]
  21. Yoshizaki K., Watari H., Radda G. K. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta. 1990 Feb 19;1051(2):144–150. doi: 10.1016/0167-4889(90)90186-h. [DOI] [PubMed] [Google Scholar]
  22. de Graaf R. A., Luo Y., Terpstra M., Merkle H., Garwood M. A new localization method using an adiabatic pulse, BIR-4. J Magn Reson B. 1995 Mar;106(3):245–252. doi: 10.1006/jmrb.1995.1040. [DOI] [PubMed] [Google Scholar]
  23. van Deursen J., Heerschap A., Oerlemans F., Ruitenbeek W., Jap P., ter Laak H., Wieringa B. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell. 1993 Aug 27;74(4):621–631. doi: 10.1016/0092-8674(93)90510-w. [DOI] [PubMed] [Google Scholar]
  24. van Gelderen P., DesPres D., van Zijl P. C., Moonen C. T. Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. J Magn Reson B. 1994 Mar;103(3):255–260. doi: 10.1006/jmrb.1994.1038. [DOI] [PubMed] [Google Scholar]
  25. van der Veen J. W., de Beer R., Luyten P. R., van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med. 1988 Jan;6(1):92–98. doi: 10.1002/mrm.1910060111. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES