Abstract
A method of sample analysis is presented which is based on fitting a joint distribution of photon count numbers. In experiments, fluorescence from a microscopic volume containing a fluctuating number of molecules is monitored by two detectors, using a confocal microscope. The two detectors may have different polarizational or spectral responses. Concentrations of fluorescent species together with two specific brightness values per species are determined. The two-dimensional fluorescence intensity distribution analysis (2D-FIDA), if used with a polarization cube, is a tool that is able to distinguish fluorescent species with different specific polarization ratios. As an example of polarization studies by 2D-FIDA, binding of 5'-(6-carboxytetramethylrhodamine) (TAMRA)-labeled theophylline to an anti-theophylline antibody has been studied. Alternatively, if two-color equipment is used, 2D-FIDA can determine concentrations and specific brightness values of fluorescent species corresponding to individual labels alone and their complex. As an example of two-color 2D-FIDA, binding of TAMRA-labeled somatostatin-14 to the human type-2 high-affinity somatostatin receptors present in stained vesicles has been studied. The presented method is unusually accurate among fluorescence fluctuation methods. It is well suited for monitoring a variety of molecular interactions, including receptors and ligands or antibodies and antigens.
Full Text
The Full Text of this article is available as a PDF (564.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Checovich W. J., Bolger R. E., Burke T. Fluorescence polarization--a new tool for cell and molecular biology. Nature. 1995 May 18;375(6528):254–256. doi: 10.1038/375254a0. [DOI] [PubMed] [Google Scholar]
- Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinds J. A., Pincombe C. F., Kanowski R. K., Day S. A., Sanderson J. C., Duffy P. Ligand displacement immunoassay: a novel enzyme immunoassay demonstrated for measuring theophylline in serum. Clin Chem. 1984 Jul;30(7):1174–1178. [PubMed] [Google Scholar]
- Jameson D. M., Sawyer W. H. Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol. 1995;246:283–300. doi: 10.1016/0076-6879(95)46014-4. [DOI] [PubMed] [Google Scholar]
- Jolley M. E. Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human plasma. J Anal Toxicol. 1981 Sep-Oct;5(5):236–240. doi: 10.1093/jat/5.5.236. [DOI] [PubMed] [Google Scholar]
- Kask P., Palo K., Ullmann D., Gall K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13756–13761. doi: 10.1073/pnas.96.24.13756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kask P., Piksarv P., Pooga M., Mets U., Lippmaa E. Separation of the rotational contribution in fluorescence correlation experiments. Biophys J. 1989 Feb;55(2):213–220. doi: 10.1016/S0006-3495(89)82796-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallin W., Eber E., Semmelrock H. J., Zach M. Theophyllin-Serumspiegelbestimmung: Vergleich zwischen Schnelltest (Enzym-Immuno-Chromatographie) und konventionellem Fluoreszenz-Polarisations-Immunoassay. Pneumologie. 1990 Aug;44(8):967–969. [PubMed] [Google Scholar]
- Poncelet S. M., Limet J. N., Noel J. P., Kayaert M. C., Galanti L., Collet-Cassart D. Immunoassay of theophylline by latex particle counting. J Immunoassay. 1990;11(1):77–88. doi: 10.1080/01971529008053259. [DOI] [PubMed] [Google Scholar]
- Qian H., Elson E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5479–5483. doi: 10.1073/pnas.87.14.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian H., Elson E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys J. 1990 Feb;57(2):375–380. doi: 10.1016/S0006-3495(90)82539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoeffter P., Pérez J., Langenegger D., Schüpbach E., Bobirnac I., Lübbert H., Bruns C., Hoyer D. Characterization and distribution of somatostatin SS-1 and SRIF-1 binding sites in rat brain: identity with SSTR-2 receptors. Eur J Pharmacol. 1995 Mar 15;289(1):163–173. doi: 10.1016/0922-4106(95)90180-9. [DOI] [PubMed] [Google Scholar]
- Schwille P., Meyer-Almes F. J., Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J. 1997 Apr;72(4):1878–1886. doi: 10.1016/S0006-3495(97)78833-7. [DOI] [PMC free article] [PubMed] [Google Scholar]