Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1703–1713. doi: 10.1016/S0006-3495(00)76722-1

Two-dimensional fluorescence intensity distribution analysis: theory and applications.

P Kask 1, K Palo 1, N Fay 1, L Brand 1, U Mets 1, D Ullmann 1, J Jungmann 1, J Pschorr 1, K Gall 1
PMCID: PMC1300767  PMID: 10733953

Abstract

A method of sample analysis is presented which is based on fitting a joint distribution of photon count numbers. In experiments, fluorescence from a microscopic volume containing a fluctuating number of molecules is monitored by two detectors, using a confocal microscope. The two detectors may have different polarizational or spectral responses. Concentrations of fluorescent species together with two specific brightness values per species are determined. The two-dimensional fluorescence intensity distribution analysis (2D-FIDA), if used with a polarization cube, is a tool that is able to distinguish fluorescent species with different specific polarization ratios. As an example of polarization studies by 2D-FIDA, binding of 5'-(6-carboxytetramethylrhodamine) (TAMRA)-labeled theophylline to an anti-theophylline antibody has been studied. Alternatively, if two-color equipment is used, 2D-FIDA can determine concentrations and specific brightness values of fluorescent species corresponding to individual labels alone and their complex. As an example of two-color 2D-FIDA, binding of TAMRA-labeled somatostatin-14 to the human type-2 high-affinity somatostatin receptors present in stained vesicles has been studied. The presented method is unusually accurate among fluorescence fluctuation methods. It is well suited for monitoring a variety of molecular interactions, including receptors and ligands or antibodies and antigens.

Full Text

The Full Text of this article is available as a PDF (564.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Checovich W. J., Bolger R. E., Burke T. Fluorescence polarization--a new tool for cell and molecular biology. Nature. 1995 May 18;375(6528):254–256. doi: 10.1038/375254a0. [DOI] [PubMed] [Google Scholar]
  2. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hinds J. A., Pincombe C. F., Kanowski R. K., Day S. A., Sanderson J. C., Duffy P. Ligand displacement immunoassay: a novel enzyme immunoassay demonstrated for measuring theophylline in serum. Clin Chem. 1984 Jul;30(7):1174–1178. [PubMed] [Google Scholar]
  4. Jameson D. M., Sawyer W. H. Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol. 1995;246:283–300. doi: 10.1016/0076-6879(95)46014-4. [DOI] [PubMed] [Google Scholar]
  5. Jolley M. E. Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human plasma. J Anal Toxicol. 1981 Sep-Oct;5(5):236–240. doi: 10.1093/jat/5.5.236. [DOI] [PubMed] [Google Scholar]
  6. Kask P., Palo K., Ullmann D., Gall K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13756–13761. doi: 10.1073/pnas.96.24.13756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kask P., Piksarv P., Pooga M., Mets U., Lippmaa E. Separation of the rotational contribution in fluorescence correlation experiments. Biophys J. 1989 Feb;55(2):213–220. doi: 10.1016/S0006-3495(89)82796-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mallin W., Eber E., Semmelrock H. J., Zach M. Theophyllin-Serumspiegelbestimmung: Vergleich zwischen Schnelltest (Enzym-Immuno-Chromatographie) und konventionellem Fluoreszenz-Polarisations-Immunoassay. Pneumologie. 1990 Aug;44(8):967–969. [PubMed] [Google Scholar]
  10. Poncelet S. M., Limet J. N., Noel J. P., Kayaert M. C., Galanti L., Collet-Cassart D. Immunoassay of theophylline by latex particle counting. J Immunoassay. 1990;11(1):77–88. doi: 10.1080/01971529008053259. [DOI] [PubMed] [Google Scholar]
  11. Qian H., Elson E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5479–5483. doi: 10.1073/pnas.87.14.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Qian H., Elson E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys J. 1990 Feb;57(2):375–380. doi: 10.1016/S0006-3495(90)82539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schoeffter P., Pérez J., Langenegger D., Schüpbach E., Bobirnac I., Lübbert H., Bruns C., Hoyer D. Characterization and distribution of somatostatin SS-1 and SRIF-1 binding sites in rat brain: identity with SSTR-2 receptors. Eur J Pharmacol. 1995 Mar 15;289(1):163–173. doi: 10.1016/0922-4106(95)90180-9. [DOI] [PubMed] [Google Scholar]
  14. Schwille P., Meyer-Almes F. J., Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J. 1997 Apr;72(4):1878–1886. doi: 10.1016/S0006-3495(97)78833-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES