Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1714–1724. doi: 10.1016/S0006-3495(00)76723-3

Stability of a melittin pore in a lipid bilayer: a molecular dynamics study.

J H Lin 1, A Baumgaertner 1
PMCID: PMC1300768  PMID: 10733954

Abstract

We have investigated the configuration and the stability of a single membrane pore bound by four melittin molecules and embedded in a fully hydrated bilayer lipid membrane. We used molecular dynamics simulations up to 5.8 ns. It is found that the initial tetrameric configuration decays with increasing time into a stable trimer and one monomer. This continuous transformation is accompanied by a lateral expansion of the aqueous pore exhibiting a final size comparable to experimental findings. The expansion-induced formation of an interface between the pore-lining acyl chains of the lipids and the pore water ("hydrophobic pore") is transformed into an energetically more favorable toroidal pore structure where some lipid heads are translocated from the rim to the central part of the interface ("hydrophilic pore"). The expansion of the pore is supported by the electrostatic repulsion among the alpha-helices. It is hypothesized that pore growth, and hence cell lysis, is induced by a melittin-mediated line tension of the pore.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Hubbell W. L. The aggregation state of spin-labeled melittin in solution and bound to phospholipid membranes: evidence that membrane-bound melittin is monomeric. Proteins. 1988;3(4):230–242. doi: 10.1002/prot.340030404. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997 Apr 1;156(3):197–211. doi: 10.1007/s002329900201. [DOI] [PubMed] [Google Scholar]
  3. Ben-Tal N., Honig B. Helix-helix interactions in lipid bilayers. Biophys J. 1996 Dec;71(6):3046–3050. doi: 10.1016/S0006-3495(96)79498-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
  5. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breed J., Sankararamakrishnan R., Kerr I. D., Sansom M. S. Molecular dynamics simulations of water within models of ion channels. Biophys J. 1996 Apr;70(4):1643–1661. doi: 10.1016/S0006-3495(96)79727-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  9. Egberts E., Marrink S. J., Berendsen H. J. Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J. 1994;22(6):423–436. doi: 10.1007/BF00180163. [DOI] [PubMed] [Google Scholar]
  10. Feller S. E., Yin D., Pastor R. W., MacKerell A. D., Jr Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997 Nov;73(5):2269–2279. doi: 10.1016/S0006-3495(97)78259-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hermetter A., Lakowicz J. R. The aggregation state of mellitin in lipid bilayers. An energy transfer study. J Biol Chem. 1986 Jun 25;261(18):8243–8248. [PubMed] [Google Scholar]
  12. John E., Jähnig F. Aggregation state of melittin in lipid vesicle membranes. Biophys J. 1991 Aug;60(2):319–328. doi: 10.1016/S0006-3495(91)82056-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katsu T., Ninomiya C., Kuroko M., Kobayashi H., Hirota T., Fujita Y. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim Biophys Acta. 1988 Mar 22;939(1):57–63. doi: 10.1016/0005-2736(88)90047-8. [DOI] [PubMed] [Google Scholar]
  14. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ladokhin A. S., Selsted M. E., White S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J. 1997 Apr;72(4):1762–1766. doi: 10.1016/S0006-3495(97)78822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ladokhin A. S., Wimley W. C., White S. H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J. 1995 Nov;69(5):1964–1971. doi: 10.1016/S0006-3495(95)80066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  18. Matsuzaki K., Murase O., Fujii N., Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996 Sep 3;35(35):11361–11368. doi: 10.1021/bi960016v. [DOI] [PubMed] [Google Scholar]
  19. Matsuzaki K., Nakamura A., Murase O., Sugishita K., Fujii N., Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997 Feb 25;36(8):2104–2111. doi: 10.1021/bi961870p. [DOI] [PubMed] [Google Scholar]
  20. Matsuzaki K., Yoneyama S., Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. doi: 10.1016/S0006-3495(97)78115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rex S. Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem. 1996 Jan 16;58(1-2):75–85. doi: 10.1016/0301-4622(95)00087-9. [DOI] [PubMed] [Google Scholar]
  22. Rex S., Schwarz G. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry. 1998 Feb 24;37(8):2336–2345. doi: 10.1021/bi971009p. [DOI] [PubMed] [Google Scholar]
  23. Roux B., Karplus M. Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 1994;23:731–761. doi: 10.1146/annurev.bb.23.060194.003503. [DOI] [PubMed] [Google Scholar]
  24. Sansom M. S., Son H. S., Sankararamakrishnan R., Kerr I. D., Breed J. Seven-helix bundles: molecular modeling via restrained molecular dynamics. Biophys J. 1995 Apr;68(4):1295–1310. doi: 10.1016/S0006-3495(95)80303-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  26. Schwarz G., Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):82–90. doi: 10.1016/0005-2736(89)90526-9. [DOI] [PubMed] [Google Scholar]
  27. Schwarz G., Zong R. T., Popescu T. Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta. 1992 Sep 21;1110(1):97–104. doi: 10.1016/0005-2736(92)90299-2. [DOI] [PubMed] [Google Scholar]
  28. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Talbot J. C., Faucon J. F., Dufourcq J. Different states of self-association of melittin in phospholipid bilayers. A resonance energy transfer approach. Eur Biophys J. 1987;15(3):147–157. doi: 10.1007/BF00263679. [DOI] [PubMed] [Google Scholar]
  30. Taupin C., Dvolaitzky M., Sauterey C. Osmotic pressure induced pores in phospholipid vesicles. Biochemistry. 1975 Oct 21;14(21):4771–4775. doi: 10.1021/bi00692a032. [DOI] [PubMed] [Google Scholar]
  31. Terwilliger T. C., Eisenberg D. The structure of melittin. I. Structure determination and partial refinement. J Biol Chem. 1982 Jun 10;257(11):6010–6015. doi: 10.2210/pdb1mlt/pdb. [DOI] [PubMed] [Google Scholar]
  32. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tosteson M. T., Holmes S. J., Razin M., Tosteson D. C. Melittin lysis of red cells. J Membr Biol. 1985;87(1):35–44. doi: 10.1007/BF01870697. [DOI] [PubMed] [Google Scholar]
  36. Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. doi: 10.1016/S0006-3495(81)84719-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  39. Zhong Q., Jiang Q., Moore P. B., Newns D. M., Klein M. L. Molecular dynamics simulation of a synthetic ion channel. Biophys J. 1998 Jan;74(1):3–10. doi: 10.1016/S0006-3495(98)77761-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. von Heijne G. Proline kinks in transmembrane alpha-helices. J Mol Biol. 1991 Apr 5;218(3):499–503. doi: 10.1016/0022-2836(91)90695-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES