Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1748–1764. doi: 10.1016/s0006-3495(00)76726-9

Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress.

D S Cayley 1, H J Guttman 1, M T Record Jr 1
PMCID: PMC1300771  PMID: 10733957

Abstract

To obtain turgor pressure, intracellular osmolalities, and cytoplasmic water activity of Escherichia coli as a function of osmolality of growth, we have quantified and analyzed amounts of cell, cytoplasmic, and periplasmic water as functions of osmolality of growth and osmolality of plasmolysis of nongrowing cells with NaCl. The effects are large; NaCl (plasmolysis) titrations of cells grown in minimal medium at 0.03 Osm reduce cytoplasmic and cell water to approximately 20% and approximately 50% of their original values, and increase periplasmic water by approximately 300%. Independent analysis of amounts of cytoplasmic and cell water demonstrate that turgor pressure decreases with increasing osmolality of growth, from approximately 3.1 atm at 0.03 Osm to approximately 1.5 at 0.1 Osm and to less than 0.5 atm above 0.5 Osm. Analysis of periplasmic membrane-derived oligosaccharide (MDO) concentrations as a function of osmolality, calculated from literature analytical data and measured periplasmic volumes, provides independent evidence that turgor pressure decreases with increasing osmolality, and verifies that cytoplasmic and periplasmic osmolalities are equal. We propose that MDO play a key role in periplasmic volume regulation at low-to-moderate osmolality. At high growth osmolalities, where only a small amount of cytoplasmic water is observed, the small turgor pressure of E. coli demonstrates that cytoplasmic water activity is only slightly less than extracellular water activity. From these findings, we deduce that the activity of cytoplasmic water exceeds its mole fraction at high osmolality, and, therefore, conclude that the activity coefficient of cytoplasmic water increases with increasing growth osmolality and exceeds unity at high osmolality, presumably as a consequence of macromolecular crowding. These novel findings are significant for thermodynamic analyses of effects of changes in growth osmolality on biopolymer processes in general and osmoregulatory processes in particular in the E. coli cytoplasm.

Full Text

The Full Text of this article is available as a PDF (166.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemohammad M. M., Knowles C. J. Osmotically induced volume and turbidity changes of Escherichia coli due to salts, sucrose and glycerol, with particular reference to the rapid permeation of glycerol into the cell. J Gen Microbiol. 1974 May;82(1):125–142. doi: 10.1099/00221287-82-1-125. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F., Prody C., Kustu S. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol. 1984 Dec;160(3):1181–1183. doi: 10.1128/jb.160.3.1181-1183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldwin W. W., Myer R., Kung T., Anderson E., Koch A. L. Growth and buoyant density of Escherichia coli at very low osmolarities. J Bacteriol. 1995 Jan;177(1):235–237. doi: 10.1128/jb.177.1.235-237.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brass J. M., Higgins C. F., Foley M., Rugman P. A., Birmingham J., Garland P. B. Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol. 1986 Mar;165(3):787–795. doi: 10.1128/jb.165.3.787-795.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capp M. W., Cayley D. S., Zhang W., Guttman H. J., Melcher S. E., Saecker R. M., Anderson C. F., Record M. T., Jr Compensating effects of opposing changes in putrescine (2+) and K+ concentrations on lac repressor-lac operator binding: in vitro thermodynamic analysis and in vivo relevance. J Mol Biol. 1996 Apr 26;258(1):25–36. doi: 10.1006/jmbi.1996.0231. [DOI] [PubMed] [Google Scholar]
  6. Cayley S., Lewis B. A., Guttman H. J., Record M. T., Jr Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol. 1991 Nov 20;222(2):281–300. doi: 10.1016/0022-2836(91)90212-o. [DOI] [PubMed] [Google Scholar]
  7. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cayley S., Record M. T., Jr, Lewis B. A. Accumulation of 3-(N-morpholino)propanesulfonate by osmotically stressed Escherichia coli K-12. J Bacteriol. 1989 Jul;171(7):3597–3602. doi: 10.1128/jb.171.7.3597-3602.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cosgrove D. J. In defence of the cell volumetric elastic modulus. Plant Cell Environ. 1988;11:67–69. [PubMed] [Google Scholar]
  10. Cosgrove D. J. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 1993 May;124(1):1–23. doi: 10.1111/j.1469-8137.1993.tb03795.x. [DOI] [PubMed] [Google Scholar]
  11. Doyle R. J., Marquis R. E. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol. 1994 Feb;2(2):57–60. doi: 10.1016/0966-842x(94)90127-9. [DOI] [PubMed] [Google Scholar]
  12. Guttman H. J., Anderson C. F., Record M. T., Jr Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo. Biophys J. 1995 Mar;68(3):835–846. doi: 10.1016/S0006-3495(95)80260-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. doi: 10.1128/jb.173.24.7918-7924.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Höltje J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev. 1998 Mar;62(1):181–203. doi: 10.1128/mmbr.62.1.181-203.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson K., Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747–6751. doi: 10.1073/pnas.81.21.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kennedy E. P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1092–1095. doi: 10.1073/pnas.79.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kennedy E. P., Rumley M. K. Osmotic regulation of biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Bacteriol. 1988 Jun;170(6):2457–2461. doi: 10.1128/jb.170.6.2457-2461.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koch A. L., Pinette M. F. Nephelometric determination of turgor pressure in growing gram-negative bacteria. J Bacteriol. 1987 Aug;169(8):3654–3663. doi: 10.1128/jb.169.8.3654-3663.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koch A. L. The biophysics of the gram-negative periplasmic space. Crit Rev Microbiol. 1998;24(1):23–59. doi: 10.1080/10408419891294172. [DOI] [PubMed] [Google Scholar]
  20. Koch A. L., Woeste S. Elasticity of the sacculus of Escherichia coli. J Bacteriol. 1992 Jul;174(14):4811–4819. doi: 10.1128/jb.174.14.4811-4819.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lacroix J. M., Tempête M., Menichi B., Bohin J. P. Molecular cloning and expression of a locus (mdoA) implicated in the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Mol Microbiol. 1989 Sep;3(9):1173–1182. doi: 10.1111/j.1365-2958.1989.tb00267.x. [DOI] [PubMed] [Google Scholar]
  23. Laimins L. A., Rhoads D. B., Epstein W. Osmotic control of kdp operon expression in Escherichia coli. Proc Natl Acad Sci U S A. 1981 Jan;78(1):464–468. doi: 10.1073/pnas.78.1.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Larsen P. I., Sydnes L. K., Landfald B., Strøm A. R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol. 1987 Feb;147(1):1–7. doi: 10.1007/BF00492896. [DOI] [PubMed] [Google Scholar]
  25. Li N., Cannon M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol. 1998 May;180(9):2450–2458. doi: 10.1128/jb.180.9.2450-2458.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malli R., Epstein W. Expression of the Kdp ATPase is consistent with regulation by turgor pressure. J Bacteriol. 1998 Oct;180(19):5102–5108. doi: 10.1128/jb.180.19.5102-5108.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McLaggan D., Epstein W. Escherichia coli accumulates the eukaryotic osmolyte taurine at high osmolarity. FEMS Microbiol Lett. 1991 Jun 15;65(2):209–213. doi: 10.1016/0378-1097(91)90304-s. [DOI] [PubMed] [Google Scholar]
  28. McLaggan D., Logan T. M., Lynn D. G., Epstein W. Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli. J Bacteriol. 1990 Jul;172(7):3631–3636. doi: 10.1128/jb.172.7.3631-3636.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meury J. Immediate and transient inhibition of the respiration of Escherichia coli under hyperosmotic shock. FEMS Microbiol Lett. 1994 Sep 1;121(3):281–286. doi: 10.1111/j.1574-6968.1994.tb07113.x. [DOI] [PubMed] [Google Scholar]
  30. Philip J. R. The Osmotic Cell, Solute Diffusibility, and the Plant Water Economy. Plant Physiol. 1958 Jul;33(4):264–271. doi: 10.1104/pp.33.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Record M. T., Jr, Courtenay E. S., Cayley S., Guttman H. J. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci. 1998 May;23(5):190–194. doi: 10.1016/s0968-0004(98)01207-9. [DOI] [PubMed] [Google Scholar]
  32. Richey B., Cayley D. S., Mossing M. C., Kolka C., Anderson C. F., Farrar T. C., Record M. T., Jr Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein-DNA interactions and gene expression. J Biol Chem. 1987 May 25;262(15):7157–7164. [PubMed] [Google Scholar]
  33. Rumley M. K., Therisod H., Weissborn A. C., Kennedy E. P. Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Biol Chem. 1992 Jun 15;267(17):11806–11810. [PubMed] [Google Scholar]
  34. Schwarz H., Koch A. L. Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the Gram-negative cell wall. Microbiology. 1995 Dec;141(Pt 12):3161–3170. doi: 10.1099/13500872-141-12-3161. [DOI] [PubMed] [Google Scholar]
  35. Sen K., Hellman J., Nikaido H. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J Biol Chem. 1988 Jan 25;263(3):1182–1187. [PubMed] [Google Scholar]
  36. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  37. Vinckier A., Semenza G. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 1998 Jun 23;430(1-2):12–16. doi: 10.1016/s0014-5793(98)00592-4. [DOI] [PubMed] [Google Scholar]
  38. Woldringh C. L. Significance of plasmolysis spaces as markers for periseptal annuli and adhesion sites. Mol Microbiol. 1994 Nov;14(4):597–607. doi: 10.1111/j.1365-2958.1994.tb01299.x. [DOI] [PubMed] [Google Scholar]
  39. Wood J. M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev. 1999 Mar;63(1):230–262. doi: 10.1128/mmbr.63.1.230-262.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhu G. L., Boyer J. S. Enlargement in chara studied with a turgor clamp : growth rate is not determined by turgor. Plant Physiol. 1992 Dec;100(4):2071–2080. doi: 10.1104/pp.100.4.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES