Abstract
Mg(2+) serves as a competitive antagonist against Ca(2+) in the high-affinity Ca(2+) activation site (A-site) and as an agonist of Ca(2+) in the low-affinity Ca(2+) inactivation site (I-site) of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). This paper presents the quantitative determination of the affinities for Ca(2+) and Mg(2+) of A- and I-sites of RyR in frog skeletal muscles by measuring [(3)H]ryanodine binding to purified alpha- and beta-RyRs and CICR activity in skinned fibers. There was only a minor difference in affinity at most between alpha- and beta-RyRs. The A-site favored Ca(2+) 20- to 30-fold over Mg(2+), whereas the I-site was nonselective between the two cations. The RyR in situ showed fivefold higher affinities for Ca(2+) and Mg(2+) of both sites than the purified alpha- and beta-RyRs with unchanged cation selectivity. Adenine nucleotides, whose stimulating effect was found to be indistinguishable between free and complexed forms, did not alter the affinities for cations in either site, except for the increased maximum activity of RyR. Caffeine increased not only the affinity of the A-site for Ca(2+) alone, but also the maximum activity of RyR with otherwise minor changes. The results presented here suggest that the rate of CICR in frog skeletal muscles appears to be too low to explain the physiological Ca(2+) release, even though Mg(2+) inhibition disappears.
Full Text
The Full Text of this article is available as a PDF (184.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
- Csernoch L., Jacquemond V., Schneider M. F. Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers. J Gen Physiol. 1993 Feb;101(2):297–333. doi: 10.1085/jgp.101.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Franzini-Armstrong C., Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997 Jul;77(3):699–729. doi: 10.1152/physrev.1997.77.3.699. [DOI] [PubMed] [Google Scholar]
- Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
- Harkins A. B., Kurebayashi N., Baylor S. M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys J. 1993 Aug;65(2):865–881. doi: 10.1016/S0006-3495(93)81112-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacquemond V., Schneider M. F. Low myoplasmic Mg2+ potentiates calcium release during depolarization of frog skeletal muscle fibers. J Gen Physiol. 1992 Jul;100(1):137–154. doi: 10.1085/jgp.100.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jong D. S., Pape P. C., Baylor S. M., Chandler W. K. Calcium inactivation of calcium release in frog cut muscle fibers that contain millimolar EGTA or Fura-2. J Gen Physiol. 1995 Aug;106(2):337–388. doi: 10.1085/jgp.106.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakuta Y. Effects of ATP and related compounds on the Ca-induced Ca release mechanism of the Xenopus SR. Pflugers Arch. 1984 Jan;400(1):72–79. doi: 10.1007/BF00670539. [DOI] [PubMed] [Google Scholar]
- Konishi M., Baylor S. M. Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers. J Gen Physiol. 1991 Feb;97(2):245–270. doi: 10.1085/jgp.97.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi M., Suda N., Kurihara S. Fluorescence signals from the Mg2+/Ca2+ indicator furaptra in frog skeletal muscle fibers. Biophys J. 1993 Jan;64(1):223–239. doi: 10.1016/S0006-3495(93)81359-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurebayashi N., Harkins A. B., Baylor S. M. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys J. 1993 Jun;64(6):1934–1960. doi: 10.1016/S0006-3495(93)81564-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurebayashi N., Ogawa Y. Characterization of increased Ca2+ efflux by quercetin from the sarcoplasmic reticulum in frog skinned skeletal muscle fibres. J Muscle Res Cell Motil. 1986 Apr;7(2):142–150. doi: 10.1007/BF01753415. [DOI] [PubMed] [Google Scholar]
- Kurebayashi N., Ogawa Y. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ. Biophys J. 1998 Apr;74(4):1795–1807. doi: 10.1016/S0006-3495(98)77890-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacampagne A., Klein M. G., Schneider M. F. Modulation of the frequency of spontaneous sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks) by myoplasmic [Mg2+] in frog skeletal muscle. J Gen Physiol. 1998 Feb;111(2):207–224. doi: 10.1085/jgp.111.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Stephenson D. G. Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol. 1991 Mar;434:507–528. doi: 10.1113/jphysiol.1991.sp018483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laver D. R., Baynes T. M., Dulhunty A. F. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol. 1997 Apr 1;156(3):213–229. doi: 10.1007/s002329900202. [DOI] [PubMed] [Google Scholar]
- Lüttgau H. C., Oetliker H. The action of caffeine on the activation of the contractile mechanism in straited muscle fibres. J Physiol. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mack M. M., Molinski T. F., Buck E. D., Pessah I. N. Novel modulators of skeletal muscle FKBP12/calcium channel complex from Ianthella basta. Role of FKBP12 in channel gating. J Biol Chem. 1994 Sep 16;269(37):23236–23249. [PubMed] [Google Scholar]
- Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
- Meissner G., Rios E., Tripathy A., Pasek D. A. Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. 1997 Jan 17;272(3):1628–1638. doi: 10.1074/jbc.272.3.1628. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Murayama T., Kurebayashi N., Ogawa Y. Stimulation by polyols of the two ryanodine receptor isoforms of frog skeletal muscle. J Muscle Res Cell Motil. 1998 Jan;19(1):15–24. doi: 10.1023/a:1005344108908. [DOI] [PubMed] [Google Scholar]
- Murayama T., Ogawa Y. Purification and characterization of two ryanodine-binding protein isoforms from sarcoplasmic reticulum of bullfrog skeletal muscle. J Biochem. 1992 Oct;112(4):514–522. doi: 10.1093/oxfordjournals.jbchem.a123931. [DOI] [PubMed] [Google Scholar]
- Murayama T., Ogawa Y. Relationships among ryanodine receptor isoforms expressed in vertebrate skeletal muscles based on immunologic cross-reactivities. J Biochem. 1994 Nov;116(5):1117–1122. doi: 10.1093/oxfordjournals.jbchem.a124636. [DOI] [PubMed] [Google Scholar]
- Murayama T., Ogawa Y. Similar Ca2+ dependences of [3H]ryanodine binding to alpha- and beta-ryanodine receptors purified from bullfrog skeletal muscle in an isotonic medium. FEBS Lett. 1996 Feb 19;380(3):267–271. doi: 10.1016/0014-5793(96)00053-1. [DOI] [PubMed] [Google Scholar]
- Ogawa Y., Harafuji H. Effect of temperature on [3H]ryanodine binding to sarcoplasmic reticulum from bullfrog skeletal muscle. J Biochem. 1990 Jun;107(6):887–893. doi: 10.1093/oxfordjournals.jbchem.a123143. [DOI] [PubMed] [Google Scholar]
- Ogawa Y., Kurebayashi N., Harafuji H. Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. J Biochem. 1986 Nov;100(5):1305–1318. doi: 10.1093/oxfordjournals.jbchem.a121837. [DOI] [PubMed] [Google Scholar]
- Ogawa Y., Murayama T., Kurebayashi N. Comparison of properties of Ca2+ release channels between rabbit and frog skeletal muscles. Mol Cell Biochem. 1999 Jan;190(1-2):191–201. [PubMed] [Google Scholar]
- Ogawa Y. Role of ryanodine receptors. Crit Rev Biochem Mol Biol. 1994;29(4):229–274. doi: 10.3109/10409239409083482. [DOI] [PubMed] [Google Scholar]
- Pape P. C., Jong D. S., Chandler W. K. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol. 1995 Aug;106(2):259–336. doi: 10.1085/jgp.106.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider M. F., Simon B. J. Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. J Physiol. 1988 Nov;405:727–745. doi: 10.1113/jphysiol.1988.sp017358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sitsapesan R., Williams A. J. Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol. 1990 Apr;423:425–439. doi: 10.1113/jphysiol.1990.sp018031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
- Tripathy A., Meissner G. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J. 1996 Jun;70(6):2600–2615. doi: 10.1016/S0006-3495(96)79831-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagenknecht T., Radermacher M. Ryanodine receptors: structure and macromolecular interactions. Curr Opin Struct Biol. 1997 Apr;7(2):258–265. doi: 10.1016/s0959-440x(97)80034-6. [DOI] [PubMed] [Google Scholar]
- Westerblad H., Allen D. G. Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol. 1992;453:413–434. doi: 10.1113/jphysiol.1992.sp019236. [DOI] [PMC free article] [PubMed] [Google Scholar]