Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1862–1871. doi: 10.1016/S0006-3495(00)76735-X

Mutation in pore domain uncovers cation- and voltage-sensitive recovery from inactivation in KAT1 channel.

A Moroni 1, S Gazzarrini 1, R Cerana 1, R Colombo 1, J U Sutter 1, D DiFrancesco 1, D Gradmann 1, G Thiel 1
PMCID: PMC1300780  PMID: 10733966

Abstract

Effects of threonine substitution by glutamine at position 256 in the pore of the KAT1 channel have been investigated by voltage-clamp, using heterologous gene expression in Xenopus oocytes. The major discrepancy in T256Q from the wild-type channel (wt) was cation specific. While K(+) currents were reduced in a largely scalar fashion, the NH(4)(+) current exhibited slow, voltage-dependent inhibition during hyperpolarization. The same effects could be induced in wt, or intensified in T256Q, by addition of the impermeant cation methylammonium (MA(+)) to the bath. This stresses that both the mutation and MA(+) affect a mechanism already present in the wt. Assuming that current inhibition could be described as entry of the channel into an inactive state, we modeled in both wt and in T256Q the relaxation kinetics of the clamp currents by a C-O-I gating scheme, where C (closed) and I (inactivated) are nonconductive states, and O is an open state allowing K(+) and NH(4)(+) passage. The key reaction is the transition I-O. This cation-sensitive transition step ensures release of the channel from the inactive state and is approximately 30 times smaller in T256Q compared to wt. It can be inhibited by external MA(+) and is stimulated strongly by K(+) and weakly by NH(4)(+). This sensitivity of gating to external cations may prevent K(+) leakage from cation-starved cells.

Full Text

The Full Text of this article is available as a PDF (134.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer C. K., Falk T., Schwarz J. R. An endogenous inactivating inward-rectifying potassium current in oocytes of Xenopus laevis. Pflugers Arch. 1996 Sep;432(5):812–820. doi: 10.1007/s004240050203. [DOI] [PubMed] [Google Scholar]
  3. Becker D., Dreyer I., Hoth S., Reid J. D., Busch H., Lehnen M., Palme K., Hedrich R. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8123–8128. doi: 10.1073/pnas.93.15.8123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blatt M. R. Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol. 1991 Nov;124(2):95–112. doi: 10.1007/BF01870455. [DOI] [PubMed] [Google Scholar]
  5. Brüggemann L., Dietrich P., Becker D., Dreyer I., Palme K., Hedrich R. Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3298–3302. doi: 10.1073/pnas.96.6.3298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clapham D. E. Not so funny anymore: pacing channels are cloned. Neuron. 1998 Jul;21(1):5–7. doi: 10.1016/s0896-6273(00)80508-5. [DOI] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Dreyer I., Becker D., Bregante M., Gambale F., Lehnen M., Palme K., Hedrich R. Single mutations strongly alter the K+-selective pore of the K(in) channel KAT1. FEBS Lett. 1998 Jul 3;430(3):370–376. doi: 10.1016/s0014-5793(98)00694-2. [DOI] [PubMed] [Google Scholar]
  9. Moroni A., Bardella L., Thiel G. The impermeant ion methylammonium blocks K+ and NH4+ currents through KAT1 channel differently: evidence for ion interaction in channel permeation. J Membr Biol. 1998 May 1;163(1):25–35. doi: 10.1007/s002329900367. [DOI] [PubMed] [Google Scholar]
  10. Obermeyer G., Armstrong F., Blatt M. R. Selective block by alpha-dendrotoxin of the K+ inward rectifier at the Vicia guard cell plasma membrane. J Membr Biol. 1994 Feb;137(3):249–259. doi: 10.1007/BF00232593. [DOI] [PubMed] [Google Scholar]
  11. Pardo L. A., Heinemann S. H., Terlau H., Ludewig U., Lorra C., Pongs O., Stühmer W. Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2466–2470. doi: 10.1073/pnas.89.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
  13. Schroeder J. I., Fang H. H. Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11583–11587. doi: 10.1073/pnas.88.24.11583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Uozumi N., Gassmann W., Cao Y., Schroeder J. I. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J Biol Chem. 1995 Oct 13;270(41):24276–24281. doi: 10.1074/jbc.270.41.24276. [DOI] [PubMed] [Google Scholar]
  15. Véry A. A., Gaymard F., Bosseux C., Sentenac H., Thibaud J. B. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J. 1995 Feb;7(2):321–332. doi: 10.1046/j.1365-313x.1995.7020321.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES