Abstract
In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline in myoplasmic Ca(2+) concentration resulting from a reduction in L-type Ca(2+) channel (dihydropyridine receptor, DHPR) charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5-7-, 14-18-, or 21-24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Total charge movement or the DHPR charge movement was measured simultaneously with intracellular Ca(2+) concentration. The maximum charge movement (Q(max)) recorded (mean +/- SEM, in nC microF(-1)) was 53 +/- 3.2 (n = 47), 51 +/- 3.2 (n = 35) (non-significant, ns), and 33 +/- 1.9 (n = 32) (p < 0.01), for the three age groups, respectively. Q(max) corresponding to the DHPR was 43 +/- 3.3, 38 +/- 4.1 (ns), and 25 +/- 3.4 (p < 0.01) for the three age groups, respectively. The peak intracellular [Ca(2+)] recorded at 40 mV (in microM) was 15.7 +/- 0. 12, 16.7 +/- 0.18 (ns), and 8.2 +/- 0.07 (p < 0.01) for the three age groups, respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that the reduction in the peak intracellular [Ca(2+)] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal muscle fibers from aging mammals.
Full Text
The Full Text of this article is available as a PDF (93.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams B. A., Tanabe T., Mikami A., Numa S., Beam K. G. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature. 1990 Aug 9;346(6284):569–572. doi: 10.1038/346569a0. [DOI] [PubMed] [Google Scholar]
- Ashley C. C., Mulligan I. P., Lea T. J. Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys. 1991 Feb;24(1):1–73. doi: 10.1017/s0033583500003267. [DOI] [PubMed] [Google Scholar]
- Beam K. G., Franzini-Armstrong C. Functional and structural approaches to the study of excitation-contraction coupling. Methods Cell Biol. 1997;52:283–306. doi: 10.1016/s0091-679x(08)60384-2. [DOI] [PubMed] [Google Scholar]
- Beuckelmann D. J., Wier W. G. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol. 1988 Nov;405:233–255. doi: 10.1113/jphysiol.1988.sp017331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezanilla F. Gating of sodium and potassium channels. J Membr Biol. 1985;88(2):97–111. doi: 10.1007/BF01868424. [DOI] [PubMed] [Google Scholar]
- Booth F. W., Weeden S. H., Tseng B. S. Effect of aging on human skeletal muscle and motor function. Med Sci Sports Exerc. 1994 May;26(5):556–560. [PubMed] [Google Scholar]
- Brooks S. V., Faulkner J. A. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988 Oct;404:71–82. doi: 10.1113/jphysiol.1988.sp017279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks S. V., Faulkner J. A. Isometric, shortening, and lengthening contractions of muscle fiber segments from adult and old mice. Am J Physiol. 1994 Aug;267(2 Pt 1):C507–C513. doi: 10.1152/ajpcell.1994.267.2.C507. [DOI] [PubMed] [Google Scholar]
- Brooks S. V., Faulkner J. A. Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc. 1994 Apr;26(4):432–439. [PubMed] [Google Scholar]
- Delbono O. Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres. J Physiol. 1992;451:187–203. doi: 10.1113/jphysiol.1992.sp019160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delbono O., Meissner G. Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles. J Membr Biol. 1996 May;151(2):123–130. doi: 10.1007/s002329900063. [DOI] [PubMed] [Google Scholar]
- Delbono O., O'Rourke K. S., Ettinger W. H. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. J Membr Biol. 1995 Dec;148(3):211–222. doi: 10.1007/BF00235039. [DOI] [PubMed] [Google Scholar]
- Delbono O., Renganathan M., Messi M. L. Excitation-Ca2+ release-contraction coupling in single aged human skeletal muscle fiber. Muscle Nerve Suppl. 1997;5:S88–S92. doi: 10.1002/(sici)1097-4598(1997)5+<88::aid-mus21>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Delbono O., Renganathan M., Messi M. L. Regulation of mouse skeletal muscle L-type Ca2+ channel by activation of the insulin-like growth factor-1 receptor. J Neurosci. 1997 Sep 15;17(18):6918–6928. doi: 10.1523/JNEUROSCI.17-18-06918.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delbono O., Stefani E. Calcium current inactivation in denervated rat skeletal muscle fibres. J Physiol. 1993 Jan;460:173–183. doi: 10.1113/jphysiol.1993.sp019465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delbono O., Stefani E. Calcium transients in single mammalian skeletal muscle fibres. J Physiol. 1993 Apr;463:689–707. doi: 10.1113/jphysiol.1993.sp019617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddinger T. J., Moss R. L., Cassens R. G. Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. J Histochem Cytochem. 1985 Oct;33(10):1033–1041. doi: 10.1177/33.10.2931475. [DOI] [PubMed] [Google Scholar]
- Edström L., Larsson L. Effects of age on contractile and enzyme-histochemical properties of fast- and slow-twitch single motor units in the rat. J Physiol. 1987 Nov;392:129–145. doi: 10.1113/jphysiol.1987.sp016773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Finch E. A., Augustine G. J. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998 Dec 24;396(6713):753–756. doi: 10.1038/25541. [DOI] [PubMed] [Google Scholar]
- Garcia J., Schneider M. F. Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres. J Physiol. 1993 Apr;463:709–728. doi: 10.1113/jphysiol.1993.sp019618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
- Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
- Moore D. H., 2nd A study of age group track and field records to relate age and running speed. Nature. 1975 Jan 24;253(5489):264–265. doi: 10.1038/253264a0. [DOI] [PubMed] [Google Scholar]
- Niggli E. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol. 1999;61:311–335. doi: 10.1146/annurev.physiol.61.1.311. [DOI] [PubMed] [Google Scholar]
- Renganathan M., Messi M. L., Delbono O. Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol. 1997 Jun 1;157(3):247–253. doi: 10.1007/s002329900233. [DOI] [PubMed] [Google Scholar]
- Renganathan M., Messi M. L., Delbono O. Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J Biol Chem. 1998 Oct 30;273(44):28845–28851. doi: 10.1074/jbc.273.44.28845. [DOI] [PubMed] [Google Scholar]
- Shirokova N., García J., Pizarro G., Ríos E. Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol. 1996 Jan;107(1):1–18. doi: 10.1085/jgp.107.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsugorka A., Ríos E., Blatter L. A. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22;269(5231):1723–1726. doi: 10.1126/science.7569901. [DOI] [PubMed] [Google Scholar]
- Wang Z. M., Messi M. L., Delbono O. Patch-clamp recording of charge movement, Ca2+ current, and Ca2+ transients in adult skeletal muscle fibers. Biophys J. 1999 Nov;77(5):2709–2716. doi: 10.1016/s0006-3495(99)77104-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z. M., Messi M. L., Renganathan M., Delbono O. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression. J Physiol. 1999 Apr 15;516(Pt 2):331–341. doi: 10.1111/j.1469-7793.1999.0331v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]