Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):2049–2059. doi: 10.1016/S0006-3495(00)76752-X

Molecular diffusion into ferritin: pathways, temperature dependence, incubation time, and concentration effects.

X Yang 1, P Arosio 1, N D Chasteen 1
PMCID: PMC1300797  PMID: 10733983

Abstract

The detailed kinetics of permeation and effusion of small nitroxide spin probe radicals with the protein shells of horse spleen ferritin (HoSF) and human H-chain ferritin (HuHF) and a 3-fold channel variant D131H+E134H of HuHF were studied by electron paramagnetic resonance spectroscopy and gel permeation chromatography under a variety of experimental conditions. The results confirm that the permeation of molecular species of 7-9-A diameter into ferritin is a charge selective process and that the threefold channels are the likely pathways for entry into the protein. Studies with holoHoSF show that increased temperature increases the rates of penetration and effusion and also increases the concentration of positively charged spin probe accumulated within the protein in excess of that in the external solution. The interior of HoSF is much more accessible to small molecules at physiological temperature of approximately 40 degrees C than at room temperature. The large activation energy of 63-67 kJ/mol measured for the effusion/penetration and the small diffusion coefficient, D approximately 5 x 10(-22) m(2)/s at 20 degrees C, corresponding to a time of approximately 60 min for traversing the protein shell, is consistent with the kinetics of diffusion being largely controlled by the restrictive porosity of the protein itself. An inverse dependence of the first-order rate constant for effusion out of the protein channel on the incubation time used for radical penetration into the protein is attributed to increased binding of the radical within the funnel-shaped channel.

Full Text

The Full Text of this article is available as a PDF (133.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Desideri A., Stefanini S., Polizio F., Petruzzelli R., Chiancone E. Iron entry route in horse spleen apoferritin. Involvement of the three-fold channels as probed by selective reaction of cysteine-126 with the spin label 4-maleimido-tempo. FEBS Lett. 1991 Aug 5;287(1-2):10–14. doi: 10.1016/0014-5793(91)80004-m. [DOI] [PubMed] [Google Scholar]
  3. Douglas T., Ripoll D. R. Calculated electrostatic gradients in recombinant human H-chain ferritin. Protein Sci. 1998 May;7(5):1083–1091. doi: 10.1002/pro.5560070502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fleming J., Joshi J. G. Ferritin: isolation of aluminum-ferritin complex from brain. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7866–7870. doi: 10.1073/pnas.84.22.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  6. Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
  7. Harrison P. M., Treffry A., Lilley T. H. Ferritin as an iron-storage protein: mechanisms of iron uptake. J Inorg Biochem. 1986 Aug;27(4):287–293. doi: 10.1016/0162-0134(86)80068-x. [DOI] [PubMed] [Google Scholar]
  8. Jacobs D. L., Watt G. D., Frankel R. B., Papaefthymiou G. C. Redox reactions associated with iron release from mammalian ferritin. Biochemistry. 1989 Feb 21;28(4):1650–1655. doi: 10.1021/bi00430a033. [DOI] [PubMed] [Google Scholar]
  9. Jones T., Spencer R., Walsh C. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues. Biochemistry. 1978 Sep 19;17(19):4011–4017. doi: 10.1021/bi00612a021. [DOI] [PubMed] [Google Scholar]
  10. Levi S., Cesareni G., Arosio P., Lorenzetti R., Soria M., Sollazzo M., Albertini A., Cortese R. Characterization of human ferritin H chain synthetized in Escherichia coli. Gene. 1987;51(2-3):269–274. doi: 10.1016/0378-1119(87)90315-5. [DOI] [PubMed] [Google Scholar]
  11. Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem. 1988 Dec 5;263(34):18086–18092. [PubMed] [Google Scholar]
  12. Levi S., Santambrogio P., Corsi B., Cozzi A., Arosio P. Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochem J. 1996 Jul 15;317(Pt 2):467–473. doi: 10.1042/bj3170467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marsh D., Watts A., Knowles P. F. Evidence for phase boundary lipid. Permeability of Tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition. Biochemistry. 1976 Aug 10;15(16):3570–3578. doi: 10.1021/bi00661a027. [DOI] [PubMed] [Google Scholar]
  14. Price D. J., Joshi J. G. Ferritin. Binding of beryllium and other divalent metal ions. J Biol Chem. 1983 Sep 25;258(18):10873–10880. [PubMed] [Google Scholar]
  15. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  16. Stefanini S., Desideri A., Vecchini P., Drakenberg T., Chiancone E. Identification of the iron entry channels in apoferritin. Chemical modification and spectroscopic studies. Biochemistry. 1989 Jan 10;28(1):378–382. doi: 10.1021/bi00427a052. [DOI] [PubMed] [Google Scholar]
  17. Stuhrmann H. B., Haas J., Ibel K., Koch M. H., Crichton R. R. Low angle neutron scattering of ferritin studied by contrast variation. J Mol Biol. 1976 Jan 25;100(3):399–413. doi: 10.1016/s0022-2836(76)80071-x. [DOI] [PubMed] [Google Scholar]
  18. Takagi H., Shi D., Ha Y., Allewell N. M., Theil E. C. Localized unfolding at the junction of three ferritin subunits. A mechanism for iron release? J Biol Chem. 1998 Jul 24;273(30):18685–18688. doi: 10.1074/jbc.273.30.18685. [DOI] [PubMed] [Google Scholar]
  19. Treffry A., Bauminger E. R., Hechel D., Hodson N. W., Nowik I., Yewdall S. J., Harrison P. M. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):721–728. doi: 10.1042/bj2960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Treffry A., Harrison P. M., Luzzago A., Cesareni G. Recombinant H-chain ferritins: effects of changes in the 3-fold channels. FEBS Lett. 1989 Apr 24;247(2):268–272. doi: 10.1016/0014-5793(89)81350-x. [DOI] [PubMed] [Google Scholar]
  21. Treffry A., Harrison P. M. Spectroscopic studies on the binding of iron, terbium, and zinc by apoferritin. J Inorg Biochem. 1984 May;21(1):9–20. doi: 10.1016/0162-0134(84)85035-7. [DOI] [PubMed] [Google Scholar]
  22. Wardeska J. G., Viglione B., Chasteen N. D. Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels. J Biol Chem. 1986 May 25;261(15):6677–6683. [PubMed] [Google Scholar]
  23. Watt G. D., Frankel R. B., Papaefthymiou G. C. Reduction of mammalian ferritin. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3640–3643. doi: 10.1073/pnas.82.11.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Watt G. D., Jacobs D., Frankel R. B. Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release? Proc Natl Acad Sci U S A. 1988 Oct;85(20):7457–7461. doi: 10.1073/pnas.85.20.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Webb B., Frame J., Zhao Z., Lee M. L., Watt G. D. Molecular entrapment of small molecules within the interior of horse spleen ferritin. Arch Biochem Biophys. 1994 Feb 15;309(1):178–183. doi: 10.1006/abbi.1994.1100. [DOI] [PubMed] [Google Scholar]
  26. Yang D., Nagayama K. Permeation of small molecules into the cavity of ferritin as revealed by proton nuclear magnetic resonance relaxation. Biochem J. 1995 Apr 1;307(Pt 1):253–256. doi: 10.1042/bj3070253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang X., Chasteen N. D. Molecular diffusion into horse spleen ferritin: a nitroxide radical spin probe study. Biophys J. 1996 Sep;71(3):1587–1595. doi: 10.1016/S0006-3495(96)79361-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES